@inproceedings{peshterliev-etal-2019-active,
title = "Active Learning for New Domains in Natural Language Understanding",
author = "Peshterliev, Stanislav and
Kearney, John and
Jagannatha, Abhyuday and
Kiss, Imre and
Matsoukas, Spyros",
editor = "Loukina, Anastassia and
Morales, Michelle and
Kumar, Rohit",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-2012",
doi = "10.18653/v1/N19-2012",
pages = "90--96",
abstract = "We explore active learning (AL) for improving the accuracy of new domains in a natural language understanding (NLU) system. We propose an algorithm called Majority-CRF that uses an ensemble of classification models to guide the selection of relevant utterances, as well as a sequence labeling model to help prioritize informative examples. Experiments with three domains show that Majority-CRF achieves 6.6{\%}-9{\%} relative error rate reduction compared to random sampling with the same annotation budget, and statistically significant improvements compared to other AL approaches. Additionally, case studies with human-in-the-loop AL on six new domains show 4.6{\%}-9{\%} improvement on an existing NLU system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peshterliev-etal-2019-active">
<titleInfo>
<title>Active Learning for New Domains in Natural Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stanislav</namePart>
<namePart type="family">Peshterliev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Kearney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhyuday</namePart>
<namePart type="family">Jagannatha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Imre</namePart>
<namePart type="family">Kiss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spyros</namePart>
<namePart type="family">Matsoukas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastassia</namePart>
<namePart type="family">Loukina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Morales</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohit</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore active learning (AL) for improving the accuracy of new domains in a natural language understanding (NLU) system. We propose an algorithm called Majority-CRF that uses an ensemble of classification models to guide the selection of relevant utterances, as well as a sequence labeling model to help prioritize informative examples. Experiments with three domains show that Majority-CRF achieves 6.6%-9% relative error rate reduction compared to random sampling with the same annotation budget, and statistically significant improvements compared to other AL approaches. Additionally, case studies with human-in-the-loop AL on six new domains show 4.6%-9% improvement on an existing NLU system.</abstract>
<identifier type="citekey">peshterliev-etal-2019-active</identifier>
<identifier type="doi">10.18653/v1/N19-2012</identifier>
<location>
<url>https://aclanthology.org/N19-2012</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>90</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Active Learning for New Domains in Natural Language Understanding
%A Peshterliev, Stanislav
%A Kearney, John
%A Jagannatha, Abhyuday
%A Kiss, Imre
%A Matsoukas, Spyros
%Y Loukina, Anastassia
%Y Morales, Michelle
%Y Kumar, Rohit
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F peshterliev-etal-2019-active
%X We explore active learning (AL) for improving the accuracy of new domains in a natural language understanding (NLU) system. We propose an algorithm called Majority-CRF that uses an ensemble of classification models to guide the selection of relevant utterances, as well as a sequence labeling model to help prioritize informative examples. Experiments with three domains show that Majority-CRF achieves 6.6%-9% relative error rate reduction compared to random sampling with the same annotation budget, and statistically significant improvements compared to other AL approaches. Additionally, case studies with human-in-the-loop AL on six new domains show 4.6%-9% improvement on an existing NLU system.
%R 10.18653/v1/N19-2012
%U https://aclanthology.org/N19-2012
%U https://doi.org/10.18653/v1/N19-2012
%P 90-96
Markdown (Informal)
[Active Learning for New Domains in Natural Language Understanding](https://aclanthology.org/N19-2012) (Peshterliev et al., NAACL 2019)
ACL
- Stanislav Peshterliev, John Kearney, Abhyuday Jagannatha, Imre Kiss, and Spyros Matsoukas. 2019. Active Learning for New Domains in Natural Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers), pages 90–96, Minneapolis, Minnesota. Association for Computational Linguistics.