@inproceedings{han-kando-2019-opinion,
title = "Opinion Mining with Deep Contextualized Embeddings",
author = "Han, Wen-Bin and
Kando, Noriko",
editor = "Kar, Sudipta and
Nadeem, Farah and
Burdick, Laura and
Durrett, Greg and
Han, Na-Rae",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-3006",
doi = "10.18653/v1/N19-3006",
pages = "35--42",
abstract = "Detecting opinion expression is a potential and essential task in opinion mining that can be extended to advanced tasks. In this paper, we considered opinion expression detection as a sequence labeling task and exploited different deep contextualized embedders into the state-of-the-art architecture, composed of bidirectional long short-term memory (BiLSTM) and conditional random field (CRF). Our experimental results show that using different word embeddings can cause contrasting results, and the model can achieve remarkable scores with deep contextualized embeddings. Especially, using BERT embedder can significantly exceed using ELMo embedder.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-kando-2019-opinion">
<titleInfo>
<title>Opinion Mining with Deep Contextualized Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wen-Bin</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noriko</namePart>
<namePart type="family">Kando</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farah</namePart>
<namePart type="family">Nadeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Burdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Na-Rae</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting opinion expression is a potential and essential task in opinion mining that can be extended to advanced tasks. In this paper, we considered opinion expression detection as a sequence labeling task and exploited different deep contextualized embedders into the state-of-the-art architecture, composed of bidirectional long short-term memory (BiLSTM) and conditional random field (CRF). Our experimental results show that using different word embeddings can cause contrasting results, and the model can achieve remarkable scores with deep contextualized embeddings. Especially, using BERT embedder can significantly exceed using ELMo embedder.</abstract>
<identifier type="citekey">han-kando-2019-opinion</identifier>
<identifier type="doi">10.18653/v1/N19-3006</identifier>
<location>
<url>https://aclanthology.org/N19-3006</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>35</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Opinion Mining with Deep Contextualized Embeddings
%A Han, Wen-Bin
%A Kando, Noriko
%Y Kar, Sudipta
%Y Nadeem, Farah
%Y Burdick, Laura
%Y Durrett, Greg
%Y Han, Na-Rae
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F han-kando-2019-opinion
%X Detecting opinion expression is a potential and essential task in opinion mining that can be extended to advanced tasks. In this paper, we considered opinion expression detection as a sequence labeling task and exploited different deep contextualized embedders into the state-of-the-art architecture, composed of bidirectional long short-term memory (BiLSTM) and conditional random field (CRF). Our experimental results show that using different word embeddings can cause contrasting results, and the model can achieve remarkable scores with deep contextualized embeddings. Especially, using BERT embedder can significantly exceed using ELMo embedder.
%R 10.18653/v1/N19-3006
%U https://aclanthology.org/N19-3006
%U https://doi.org/10.18653/v1/N19-3006
%P 35-42
Markdown (Informal)
[Opinion Mining with Deep Contextualized Embeddings](https://aclanthology.org/N19-3006) (Han & Kando, NAACL 2019)
ACL
- Wen-Bin Han and Noriko Kando. 2019. Opinion Mining with Deep Contextualized Embeddings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 35–42, Minneapolis, Minnesota. Association for Computational Linguistics.