@inproceedings{hao-etal-2017-end,
title = "An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge",
author = "Hao, Yanchao and
Zhang, Yuanzhe and
Liu, Kang and
He, Shizhu and
Liu, Zhanyi and
Wu, Hua and
Zhao, Jun",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1021",
doi = "10.18653/v1/P17-1021",
pages = "221--231",
abstract = "With the rapid growth of knowledge bases (KBs) on the web, how to take full advantage of them becomes increasingly important. Question answering over knowledge base (KB-QA) is one of the promising approaches to access the substantial knowledge. Meanwhile, as the neural network-based (NN-based) methods develop, NN-based KB-QA has already achieved impressive results. However, previous work did not put more emphasis on question representation, and the question is converted into a fixed vector regardless of its candidate answers. This simple representation strategy is not easy to express the proper information in the question. Hence, we present an end-to-end neural network model to represent the questions and their corresponding scores dynamically according to the various candidate answer aspects via cross-attention mechanism. In addition, we leverage the global knowledge inside the underlying KB, aiming at integrating the rich KB information into the representation of the answers. As a result, it could alleviates the out-of-vocabulary (OOV) problem, which helps the cross-attention model to represent the question more precisely. The experimental results on WebQuestions demonstrate the effectiveness of the proposed approach.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hao-etal-2017-end">
<titleInfo>
<title>An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanchao</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanzhe</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhu</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhanyi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the rapid growth of knowledge bases (KBs) on the web, how to take full advantage of them becomes increasingly important. Question answering over knowledge base (KB-QA) is one of the promising approaches to access the substantial knowledge. Meanwhile, as the neural network-based (NN-based) methods develop, NN-based KB-QA has already achieved impressive results. However, previous work did not put more emphasis on question representation, and the question is converted into a fixed vector regardless of its candidate answers. This simple representation strategy is not easy to express the proper information in the question. Hence, we present an end-to-end neural network model to represent the questions and their corresponding scores dynamically according to the various candidate answer aspects via cross-attention mechanism. In addition, we leverage the global knowledge inside the underlying KB, aiming at integrating the rich KB information into the representation of the answers. As a result, it could alleviates the out-of-vocabulary (OOV) problem, which helps the cross-attention model to represent the question more precisely. The experimental results on WebQuestions demonstrate the effectiveness of the proposed approach.</abstract>
<identifier type="citekey">hao-etal-2017-end</identifier>
<identifier type="doi">10.18653/v1/P17-1021</identifier>
<location>
<url>https://aclanthology.org/P17-1021</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>221</start>
<end>231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge
%A Hao, Yanchao
%A Zhang, Yuanzhe
%A Liu, Kang
%A He, Shizhu
%A Liu, Zhanyi
%A Wu, Hua
%A Zhao, Jun
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F hao-etal-2017-end
%X With the rapid growth of knowledge bases (KBs) on the web, how to take full advantage of them becomes increasingly important. Question answering over knowledge base (KB-QA) is one of the promising approaches to access the substantial knowledge. Meanwhile, as the neural network-based (NN-based) methods develop, NN-based KB-QA has already achieved impressive results. However, previous work did not put more emphasis on question representation, and the question is converted into a fixed vector regardless of its candidate answers. This simple representation strategy is not easy to express the proper information in the question. Hence, we present an end-to-end neural network model to represent the questions and their corresponding scores dynamically according to the various candidate answer aspects via cross-attention mechanism. In addition, we leverage the global knowledge inside the underlying KB, aiming at integrating the rich KB information into the representation of the answers. As a result, it could alleviates the out-of-vocabulary (OOV) problem, which helps the cross-attention model to represent the question more precisely. The experimental results on WebQuestions demonstrate the effectiveness of the proposed approach.
%R 10.18653/v1/P17-1021
%U https://aclanthology.org/P17-1021
%U https://doi.org/10.18653/v1/P17-1021
%P 221-231
Markdown (Informal)
[An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global Knowledge](https://aclanthology.org/P17-1021) (Hao et al., ACL 2017)
ACL