@inproceedings{he-etal-2017-deep,
title = "Deep Semantic Role Labeling: What Works and What`s Next",
author = "He, Luheng and
Lee, Kenton and
Lewis, Mike and
Zettlemoyer, Luke",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1044/",
doi = "10.18653/v1/P17-1044",
pages = "473--483",
abstract = "We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding, while observing a number of recent best practices for initialization and regularization. Our 8-layer ensemble model achieves 83.2 F1 on theCoNLL 2005 test set and 83.4 F1 on CoNLL 2012, roughly a 10{\%} relative error reduction over the previous state of the art. Extensive empirical analysis of these gains show that (1) deep models excel at recovering long-distance dependencies but can still make surprisingly obvious errors, and (2) that there is still room for syntactic parsers to improve these results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2017-deep">
<titleInfo>
<title>Deep Semantic Role Labeling: What Works and What‘s Next</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luheng</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenton</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Lewis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding, while observing a number of recent best practices for initialization and regularization. Our 8-layer ensemble model achieves 83.2 F1 on theCoNLL 2005 test set and 83.4 F1 on CoNLL 2012, roughly a 10% relative error reduction over the previous state of the art. Extensive empirical analysis of these gains show that (1) deep models excel at recovering long-distance dependencies but can still make surprisingly obvious errors, and (2) that there is still room for syntactic parsers to improve these results.</abstract>
<identifier type="citekey">he-etal-2017-deep</identifier>
<identifier type="doi">10.18653/v1/P17-1044</identifier>
<location>
<url>https://aclanthology.org/P17-1044/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>473</start>
<end>483</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Semantic Role Labeling: What Works and What‘s Next
%A He, Luheng
%A Lee, Kenton
%A Lewis, Mike
%A Zettlemoyer, Luke
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F he-etal-2017-deep
%X We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding, while observing a number of recent best practices for initialization and regularization. Our 8-layer ensemble model achieves 83.2 F1 on theCoNLL 2005 test set and 83.4 F1 on CoNLL 2012, roughly a 10% relative error reduction over the previous state of the art. Extensive empirical analysis of these gains show that (1) deep models excel at recovering long-distance dependencies but can still make surprisingly obvious errors, and (2) that there is still room for syntactic parsers to improve these results.
%R 10.18653/v1/P17-1044
%U https://aclanthology.org/P17-1044/
%U https://doi.org/10.18653/v1/P17-1044
%P 473-483
Markdown (Informal)
[Deep Semantic Role Labeling: What Works and What’s Next](https://aclanthology.org/P17-1044/) (He et al., ACL 2017)
ACL
- Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep Semantic Role Labeling: What Works and What’s Next. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 473–483, Vancouver, Canada. Association for Computational Linguistics.