@inproceedings{zhao-etal-2017-learning,
title = "Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders",
author = "Zhao, Tiancheng and
Zhao, Ran and
Eskenazi, Maxine",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1061/",
doi = "10.18653/v1/P17-1061",
pages = "654--664",
abstract = "While recent neural encoder-decoder models have shown great promise in modeling open-domain conversations, they often generate dull and generic responses. Unlike past work that has focused on diversifying the output of the decoder from word-level to alleviate this problem, we present a novel framework based on conditional variational autoencoders that capture the discourse-level diversity in the encoder. Our model uses latent variables to learn a distribution over potential conversational intents and generates diverse responses using only greedy decoders. We have further developed a novel variant that is integrated with linguistic prior knowledge for better performance. Finally, the training procedure is improved through introducing a bag-of-word loss. Our proposed models have been validated to generate significantly more diverse responses than baseline approaches and exhibit competence of discourse-level decision-making."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2017-learning">
<titleInfo>
<title>Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tiancheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxine</namePart>
<namePart type="family">Eskenazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While recent neural encoder-decoder models have shown great promise in modeling open-domain conversations, they often generate dull and generic responses. Unlike past work that has focused on diversifying the output of the decoder from word-level to alleviate this problem, we present a novel framework based on conditional variational autoencoders that capture the discourse-level diversity in the encoder. Our model uses latent variables to learn a distribution over potential conversational intents and generates diverse responses using only greedy decoders. We have further developed a novel variant that is integrated with linguistic prior knowledge for better performance. Finally, the training procedure is improved through introducing a bag-of-word loss. Our proposed models have been validated to generate significantly more diverse responses than baseline approaches and exhibit competence of discourse-level decision-making.</abstract>
<identifier type="citekey">zhao-etal-2017-learning</identifier>
<identifier type="doi">10.18653/v1/P17-1061</identifier>
<location>
<url>https://aclanthology.org/P17-1061/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>654</start>
<end>664</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders
%A Zhao, Tiancheng
%A Zhao, Ran
%A Eskenazi, Maxine
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F zhao-etal-2017-learning
%X While recent neural encoder-decoder models have shown great promise in modeling open-domain conversations, they often generate dull and generic responses. Unlike past work that has focused on diversifying the output of the decoder from word-level to alleviate this problem, we present a novel framework based on conditional variational autoencoders that capture the discourse-level diversity in the encoder. Our model uses latent variables to learn a distribution over potential conversational intents and generates diverse responses using only greedy decoders. We have further developed a novel variant that is integrated with linguistic prior knowledge for better performance. Finally, the training procedure is improved through introducing a bag-of-word loss. Our proposed models have been validated to generate significantly more diverse responses than baseline approaches and exhibit competence of discourse-level decision-making.
%R 10.18653/v1/P17-1061
%U https://aclanthology.org/P17-1061/
%U https://doi.org/10.18653/v1/P17-1061
%P 654-664
Markdown (Informal)
[Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders](https://aclanthology.org/P17-1061/) (Zhao et al., ACL 2017)
ACL