@inproceedings{xie-etal-2017-interpretable,
title = "An Interpretable Knowledge Transfer Model for Knowledge Base Completion",
author = "Xie, Qizhe and
Ma, Xuezhe and
Dai, Zihang and
Hovy, Eduard",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1088",
doi = "10.18653/v1/P17-1088",
pages = "950--962",
abstract = "Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, ITransF, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned associations between relations and concepts, which are represented by sparse attention vectors, can be interpreted easily. We evaluate ITransF on two benchmark datasets{---}WN18 and FB15k for knowledge base completion and obtains improvements on both the mean rank and Hits@10 metrics, over all baselines that do not use additional information.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2017-interpretable">
<titleInfo>
<title>An Interpretable Knowledge Transfer Model for Knowledge Base Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qizhe</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuezhe</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, ITransF, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned associations between relations and concepts, which are represented by sparse attention vectors, can be interpreted easily. We evaluate ITransF on two benchmark datasets—WN18 and FB15k for knowledge base completion and obtains improvements on both the mean rank and Hits@10 metrics, over all baselines that do not use additional information.</abstract>
<identifier type="citekey">xie-etal-2017-interpretable</identifier>
<identifier type="doi">10.18653/v1/P17-1088</identifier>
<location>
<url>https://aclanthology.org/P17-1088</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>950</start>
<end>962</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Interpretable Knowledge Transfer Model for Knowledge Base Completion
%A Xie, Qizhe
%A Ma, Xuezhe
%A Dai, Zihang
%A Hovy, Eduard
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F xie-etal-2017-interpretable
%X Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, ITransF, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned associations between relations and concepts, which are represented by sparse attention vectors, can be interpreted easily. We evaluate ITransF on two benchmark datasets—WN18 and FB15k for knowledge base completion and obtains improvements on both the mean rank and Hits@10 metrics, over all baselines that do not use additional information.
%R 10.18653/v1/P17-1088
%U https://aclanthology.org/P17-1088
%U https://doi.org/10.18653/v1/P17-1088
%P 950-962
Markdown (Informal)
[An Interpretable Knowledge Transfer Model for Knowledge Base Completion](https://aclanthology.org/P17-1088) (Xie et al., ACL 2017)
ACL