@inproceedings{rabinovich-etal-2017-abstract,
title = "Abstract Syntax Networks for Code Generation and Semantic Parsing",
author = "Rabinovich, Maxim and
Stern, Mitchell and
Klein, Dan",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1105",
doi = "10.18653/v1/P17-1105",
pages = "1139--1149",
abstract = "Tasks like code generation and semantic parsing require mapping unstructured (or partially structured) inputs to well-formed, executable outputs. We introduce abstract syntax networks, a modeling framework for these problems. The outputs are represented as abstract syntax trees (ASTs) and constructed by a decoder with a dynamically-determined modular structure paralleling the structure of the output tree. On the benchmark Hearthstone dataset for code generation, our model obtains 79.2 BLEU and 22.7{\%} exact match accuracy, compared to previous state-of-the-art values of 67.1 and 6.1{\%}. Furthermore, we perform competitively on the Atis, Jobs, and Geo semantic parsing datasets with no task-specific engineering.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rabinovich-etal-2017-abstract">
<titleInfo>
<title>Abstract Syntax Networks for Code Generation and Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Rabinovich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitchell</namePart>
<namePart type="family">Stern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tasks like code generation and semantic parsing require mapping unstructured (or partially structured) inputs to well-formed, executable outputs. We introduce abstract syntax networks, a modeling framework for these problems. The outputs are represented as abstract syntax trees (ASTs) and constructed by a decoder with a dynamically-determined modular structure paralleling the structure of the output tree. On the benchmark Hearthstone dataset for code generation, our model obtains 79.2 BLEU and 22.7% exact match accuracy, compared to previous state-of-the-art values of 67.1 and 6.1%. Furthermore, we perform competitively on the Atis, Jobs, and Geo semantic parsing datasets with no task-specific engineering.</abstract>
<identifier type="citekey">rabinovich-etal-2017-abstract</identifier>
<identifier type="doi">10.18653/v1/P17-1105</identifier>
<location>
<url>https://aclanthology.org/P17-1105</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1139</start>
<end>1149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstract Syntax Networks for Code Generation and Semantic Parsing
%A Rabinovich, Maxim
%A Stern, Mitchell
%A Klein, Dan
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F rabinovich-etal-2017-abstract
%X Tasks like code generation and semantic parsing require mapping unstructured (or partially structured) inputs to well-formed, executable outputs. We introduce abstract syntax networks, a modeling framework for these problems. The outputs are represented as abstract syntax trees (ASTs) and constructed by a decoder with a dynamically-determined modular structure paralleling the structure of the output tree. On the benchmark Hearthstone dataset for code generation, our model obtains 79.2 BLEU and 22.7% exact match accuracy, compared to previous state-of-the-art values of 67.1 and 6.1%. Furthermore, we perform competitively on the Atis, Jobs, and Geo semantic parsing datasets with no task-specific engineering.
%R 10.18653/v1/P17-1105
%U https://aclanthology.org/P17-1105
%U https://doi.org/10.18653/v1/P17-1105
%P 1139-1149
Markdown (Informal)
[Abstract Syntax Networks for Code Generation and Semantic Parsing](https://aclanthology.org/P17-1105) (Rabinovich et al., ACL 2017)
ACL