@inproceedings{ding-etal-2017-visualizing,
title = "Visualizing and Understanding Neural Machine Translation",
author = "Ding, Yanzhuo and
Liu, Yang and
Luan, Huanbo and
Sun, Maosong",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1106/",
doi = "10.18653/v1/P17-1106",
pages = "1150--1159",
abstract = "While neural machine translation (NMT) has made remarkable progress in recent years, it is hard to interpret its internal workings due to the continuous representations and non-linearity of neural networks. In this work, we propose to use layer-wise relevance propagation (LRP) to compute the contribution of each contextual word to arbitrary hidden states in the attention-based encoder-decoder framework. We show that visualization with LRP helps to interpret the internal workings of NMT and analyze translation errors."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-etal-2017-visualizing">
<titleInfo>
<title>Visualizing and Understanding Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanzhuo</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huanbo</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While neural machine translation (NMT) has made remarkable progress in recent years, it is hard to interpret its internal workings due to the continuous representations and non-linearity of neural networks. In this work, we propose to use layer-wise relevance propagation (LRP) to compute the contribution of each contextual word to arbitrary hidden states in the attention-based encoder-decoder framework. We show that visualization with LRP helps to interpret the internal workings of NMT and analyze translation errors.</abstract>
<identifier type="citekey">ding-etal-2017-visualizing</identifier>
<identifier type="doi">10.18653/v1/P17-1106</identifier>
<location>
<url>https://aclanthology.org/P17-1106/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1150</start>
<end>1159</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Visualizing and Understanding Neural Machine Translation
%A Ding, Yanzhuo
%A Liu, Yang
%A Luan, Huanbo
%A Sun, Maosong
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ding-etal-2017-visualizing
%X While neural machine translation (NMT) has made remarkable progress in recent years, it is hard to interpret its internal workings due to the continuous representations and non-linearity of neural networks. In this work, we propose to use layer-wise relevance propagation (LRP) to compute the contribution of each contextual word to arbitrary hidden states in the attention-based encoder-decoder framework. We show that visualization with LRP helps to interpret the internal workings of NMT and analyze translation errors.
%R 10.18653/v1/P17-1106
%U https://aclanthology.org/P17-1106/
%U https://doi.org/10.18653/v1/P17-1106
%P 1150-1159
Markdown (Informal)
[Visualizing and Understanding Neural Machine Translation](https://aclanthology.org/P17-1106/) (Ding et al., ACL 2017)
ACL
- Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong Sun. 2017. Visualizing and Understanding Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1150–1159, Vancouver, Canada. Association for Computational Linguistics.