@inproceedings{calixto-etal-2017-doubly,
title = "Doubly-Attentive Decoder for Multi-modal Neural Machine Translation",
author = "Calixto, Iacer and
Liu, Qun and
Campbell, Nick",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1175/",
doi = "10.18653/v1/P17-1175",
pages = "1913--1924",
abstract = "We introduce a Multi-modal Neural Machine Translation model in which a doubly-attentive decoder naturally incorporates spatial visual features obtained using pre-trained convolutional neural networks, bridging the gap between image description and translation. Our decoder learns to attend to source-language words and parts of an image independently by means of two separate attention mechanisms as it generates words in the target language. We find that our model can efficiently exploit not just back-translated in-domain multi-modal data but also large general-domain text-only MT corpora. We also report state-of-the-art results on the Multi30k data set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="calixto-etal-2017-doubly">
<titleInfo>
<title>Doubly-Attentive Decoder for Multi-modal Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iacer</namePart>
<namePart type="family">Calixto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nick</namePart>
<namePart type="family">Campbell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a Multi-modal Neural Machine Translation model in which a doubly-attentive decoder naturally incorporates spatial visual features obtained using pre-trained convolutional neural networks, bridging the gap between image description and translation. Our decoder learns to attend to source-language words and parts of an image independently by means of two separate attention mechanisms as it generates words in the target language. We find that our model can efficiently exploit not just back-translated in-domain multi-modal data but also large general-domain text-only MT corpora. We also report state-of-the-art results on the Multi30k data set.</abstract>
<identifier type="citekey">calixto-etal-2017-doubly</identifier>
<identifier type="doi">10.18653/v1/P17-1175</identifier>
<location>
<url>https://aclanthology.org/P17-1175/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>1913</start>
<end>1924</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
%A Calixto, Iacer
%A Liu, Qun
%A Campbell, Nick
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F calixto-etal-2017-doubly
%X We introduce a Multi-modal Neural Machine Translation model in which a doubly-attentive decoder naturally incorporates spatial visual features obtained using pre-trained convolutional neural networks, bridging the gap between image description and translation. Our decoder learns to attend to source-language words and parts of an image independently by means of two separate attention mechanisms as it generates words in the target language. We find that our model can efficiently exploit not just back-translated in-domain multi-modal data but also large general-domain text-only MT corpora. We also report state-of-the-art results on the Multi30k data set.
%R 10.18653/v1/P17-1175
%U https://aclanthology.org/P17-1175/
%U https://doi.org/10.18653/v1/P17-1175
%P 1913-1924
Markdown (Informal)
[Doubly-Attentive Decoder for Multi-modal Neural Machine Translation](https://aclanthology.org/P17-1175/) (Calixto et al., ACL 2017)
ACL