@inproceedings{chen-etal-2018-sequence,
title = "Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing",
author = "Chen, Bo and
Sun, Le and
Han, Xianpei",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1071",
doi = "10.18653/v1/P18-1071",
pages = "766--777",
abstract = "This paper proposes a neural semantic parsing approach {--} Sequence-to-Action, which models semantic parsing as an end-to-end semantic graph generation process. Our method simultaneously leverages the advantages from two recent promising directions of semantic parsing. Firstly, our model uses a semantic graph to represent the meaning of a sentence, which has a tight-coupling with knowledge bases. Secondly, by leveraging the powerful representation learning and prediction ability of neural network models, we propose a RNN model which can effectively map sentences to action sequences for semantic graph generation. Experiments show that our method achieves state-of-the-art performance on Overnight dataset and gets competitive performance on Geo and Atis datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2018-sequence">
<titleInfo>
<title>Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a neural semantic parsing approach – Sequence-to-Action, which models semantic parsing as an end-to-end semantic graph generation process. Our method simultaneously leverages the advantages from two recent promising directions of semantic parsing. Firstly, our model uses a semantic graph to represent the meaning of a sentence, which has a tight-coupling with knowledge bases. Secondly, by leveraging the powerful representation learning and prediction ability of neural network models, we propose a RNN model which can effectively map sentences to action sequences for semantic graph generation. Experiments show that our method achieves state-of-the-art performance on Overnight dataset and gets competitive performance on Geo and Atis datasets.</abstract>
<identifier type="citekey">chen-etal-2018-sequence</identifier>
<identifier type="doi">10.18653/v1/P18-1071</identifier>
<location>
<url>https://aclanthology.org/P18-1071</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>766</start>
<end>777</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing
%A Chen, Bo
%A Sun, Le
%A Han, Xianpei
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F chen-etal-2018-sequence
%X This paper proposes a neural semantic parsing approach – Sequence-to-Action, which models semantic parsing as an end-to-end semantic graph generation process. Our method simultaneously leverages the advantages from two recent promising directions of semantic parsing. Firstly, our model uses a semantic graph to represent the meaning of a sentence, which has a tight-coupling with knowledge bases. Secondly, by leveraging the powerful representation learning and prediction ability of neural network models, we propose a RNN model which can effectively map sentences to action sequences for semantic graph generation. Experiments show that our method achieves state-of-the-art performance on Overnight dataset and gets competitive performance on Geo and Atis datasets.
%R 10.18653/v1/P18-1071
%U https://aclanthology.org/P18-1071
%U https://doi.org/10.18653/v1/P18-1071
%P 766-777
Markdown (Informal)
[Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing](https://aclanthology.org/P18-1071) (Chen et al., ACL 2018)
ACL