@inproceedings{prabhumoye-etal-2018-style,
title = "Style Transfer Through Back-Translation",
author = "Prabhumoye, Shrimai and
Tsvetkov, Yulia and
Salakhutdinov, Ruslan and
Black, Alan W",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1080",
doi = "10.18653/v1/P18-1080",
pages = "866--876",
abstract = "Style transfer is the task of rephrasing the text to contain specific stylistic properties without changing the intent or affect within the context. This paper introduces a new method for automatic style transfer. We first learn a latent representation of the input sentence which is grounded in a language translation model in order to better preserve the meaning of the sentence while reducing stylistic properties. Then adversarial generation techniques are used to make the output match the desired style. We evaluate this technique on three different style transformations: sentiment, gender and political slant. Compared to two state-of-the-art style transfer modeling techniques we show improvements both in automatic evaluation of style transfer and in manual evaluation of meaning preservation and fluency.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prabhumoye-etal-2018-style">
<titleInfo>
<title>Style Transfer Through Back-Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shrimai</namePart>
<namePart type="family">Prabhumoye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Salakhutdinov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Black</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Style transfer is the task of rephrasing the text to contain specific stylistic properties without changing the intent or affect within the context. This paper introduces a new method for automatic style transfer. We first learn a latent representation of the input sentence which is grounded in a language translation model in order to better preserve the meaning of the sentence while reducing stylistic properties. Then adversarial generation techniques are used to make the output match the desired style. We evaluate this technique on three different style transformations: sentiment, gender and political slant. Compared to two state-of-the-art style transfer modeling techniques we show improvements both in automatic evaluation of style transfer and in manual evaluation of meaning preservation and fluency.</abstract>
<identifier type="citekey">prabhumoye-etal-2018-style</identifier>
<identifier type="doi">10.18653/v1/P18-1080</identifier>
<location>
<url>https://aclanthology.org/P18-1080</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>866</start>
<end>876</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Style Transfer Through Back-Translation
%A Prabhumoye, Shrimai
%A Tsvetkov, Yulia
%A Salakhutdinov, Ruslan
%A Black, Alan W.
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F prabhumoye-etal-2018-style
%X Style transfer is the task of rephrasing the text to contain specific stylistic properties without changing the intent or affect within the context. This paper introduces a new method for automatic style transfer. We first learn a latent representation of the input sentence which is grounded in a language translation model in order to better preserve the meaning of the sentence while reducing stylistic properties. Then adversarial generation techniques are used to make the output match the desired style. We evaluate this technique on three different style transformations: sentiment, gender and political slant. Compared to two state-of-the-art style transfer modeling techniques we show improvements both in automatic evaluation of style transfer and in manual evaluation of meaning preservation and fluency.
%R 10.18653/v1/P18-1080
%U https://aclanthology.org/P18-1080
%U https://doi.org/10.18653/v1/P18-1080
%P 866-876
Markdown (Informal)
[Style Transfer Through Back-Translation](https://aclanthology.org/P18-1080) (Prabhumoye et al., ACL 2018)
ACL
- Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W Black. 2018. Style Transfer Through Back-Translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 866–876, Melbourne, Australia. Association for Computational Linguistics.