@inproceedings{born-sarkar-2018-prefix,
title = "Prefix Lexicalization of Synchronous {CFG}s using Synchronous {TAG}",
author = "Born, Logan and
Sarkar, Anoop",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1107/",
doi = "10.18653/v1/P18-1107",
pages = "1160--1170",
abstract = "We show that an epsilon-free, chain-free synchronous context-free grammar (SCFG) can be converted into a weakly equivalent synchronous tree-adjoining grammar (STAG) which is prefix lexicalized. This transformation at most doubles the grammar`s rank and cubes its size, but we show that in practice the size increase is only quadratic. Our results extend Greibach normal form from CFGs to SCFGs and prove new formal properties about SCFG, a formalism with many applications in natural language processing."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="born-sarkar-2018-prefix">
<titleInfo>
<title>Prefix Lexicalization of Synchronous CFGs using Synchronous TAG</title>
</titleInfo>
<name type="personal">
<namePart type="given">Logan</namePart>
<namePart type="family">Born</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We show that an epsilon-free, chain-free synchronous context-free grammar (SCFG) can be converted into a weakly equivalent synchronous tree-adjoining grammar (STAG) which is prefix lexicalized. This transformation at most doubles the grammar‘s rank and cubes its size, but we show that in practice the size increase is only quadratic. Our results extend Greibach normal form from CFGs to SCFGs and prove new formal properties about SCFG, a formalism with many applications in natural language processing.</abstract>
<identifier type="citekey">born-sarkar-2018-prefix</identifier>
<identifier type="doi">10.18653/v1/P18-1107</identifier>
<location>
<url>https://aclanthology.org/P18-1107/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1160</start>
<end>1170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prefix Lexicalization of Synchronous CFGs using Synchronous TAG
%A Born, Logan
%A Sarkar, Anoop
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F born-sarkar-2018-prefix
%X We show that an epsilon-free, chain-free synchronous context-free grammar (SCFG) can be converted into a weakly equivalent synchronous tree-adjoining grammar (STAG) which is prefix lexicalized. This transformation at most doubles the grammar‘s rank and cubes its size, but we show that in practice the size increase is only quadratic. Our results extend Greibach normal form from CFGs to SCFGs and prove new formal properties about SCFG, a formalism with many applications in natural language processing.
%R 10.18653/v1/P18-1107
%U https://aclanthology.org/P18-1107/
%U https://doi.org/10.18653/v1/P18-1107
%P 1160-1170
Markdown (Informal)
[Prefix Lexicalization of Synchronous CFGs using Synchronous TAG](https://aclanthology.org/P18-1107/) (Born & Sarkar, ACL 2018)
ACL