@inproceedings{ma-etal-2018-forest,
title = "Forest-Based Neural Machine Translation",
author = "Ma, Chunpeng and
Tamura, Akihiro and
Utiyama, Masao and
Zhao, Tiejun and
Sumita, Eiichiro",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1116/",
doi = "10.18653/v1/P18-1116",
pages = "1253--1263",
abstract = "Tree-based neural machine translation (NMT) approaches, although achieved impressive performance, suffer from a major drawback: they only use the 1-best parse tree to direct the translation, which potentially introduces translation mistakes due to parsing errors. For statistical machine translation (SMT), forest-based methods have been proven to be effective for solving this problem, while for NMT this kind of approach has not been attempted. This paper proposes a forest-based NMT method that translates a linearized packed forest under a simple sequence-to-sequence framework (i.e., a forest-to-sequence NMT model). The BLEU score of the proposed method is higher than that of the sequence-to-sequence NMT, tree-based NMT, and forest-based SMT systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2018-forest">
<titleInfo>
<title>Forest-Based Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunpeng</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akihiro</namePart>
<namePart type="family">Tamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Utiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiejun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eiichiro</namePart>
<namePart type="family">Sumita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Tree-based neural machine translation (NMT) approaches, although achieved impressive performance, suffer from a major drawback: they only use the 1-best parse tree to direct the translation, which potentially introduces translation mistakes due to parsing errors. For statistical machine translation (SMT), forest-based methods have been proven to be effective for solving this problem, while for NMT this kind of approach has not been attempted. This paper proposes a forest-based NMT method that translates a linearized packed forest under a simple sequence-to-sequence framework (i.e., a forest-to-sequence NMT model). The BLEU score of the proposed method is higher than that of the sequence-to-sequence NMT, tree-based NMT, and forest-based SMT systems.</abstract>
<identifier type="citekey">ma-etal-2018-forest</identifier>
<identifier type="doi">10.18653/v1/P18-1116</identifier>
<location>
<url>https://aclanthology.org/P18-1116/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1253</start>
<end>1263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Forest-Based Neural Machine Translation
%A Ma, Chunpeng
%A Tamura, Akihiro
%A Utiyama, Masao
%A Zhao, Tiejun
%A Sumita, Eiichiro
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F ma-etal-2018-forest
%X Tree-based neural machine translation (NMT) approaches, although achieved impressive performance, suffer from a major drawback: they only use the 1-best parse tree to direct the translation, which potentially introduces translation mistakes due to parsing errors. For statistical machine translation (SMT), forest-based methods have been proven to be effective for solving this problem, while for NMT this kind of approach has not been attempted. This paper proposes a forest-based NMT method that translates a linearized packed forest under a simple sequence-to-sequence framework (i.e., a forest-to-sequence NMT model). The BLEU score of the proposed method is higher than that of the sequence-to-sequence NMT, tree-based NMT, and forest-based SMT systems.
%R 10.18653/v1/P18-1116
%U https://aclanthology.org/P18-1116/
%U https://doi.org/10.18653/v1/P18-1116
%P 1253-1263
Markdown (Informal)
[Forest-Based Neural Machine Translation](https://aclanthology.org/P18-1116/) (Ma et al., ACL 2018)
ACL
- Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Tiejun Zhao, and Eiichiro Sumita. 2018. Forest-Based Neural Machine Translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1253–1263, Melbourne, Australia. Association for Computational Linguistics.