@inproceedings{wolf-sonkin-etal-2018-structured,
title = "A Structured Variational Autoencoder for Contextual Morphological Inflection",
author = "Wolf-Sonkin, Lawrence and
Naradowsky, Jason and
Mielke, Sabrina J. and
Cotterell, Ryan",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-1245",
doi = "10.18653/v1/P18-1245",
pages = "2631--2641",
abstract = "Statistical morphological inflectors are typically trained on fully supervised, type-level data. One remaining open research question is the following: How can we effectively exploit raw, token-level data to improve their performance? To this end, we introduce a novel generative latent-variable model for the semi-supervised learning of inflection generation. To enable posterior inference over the latent variables, we derive an efficient variational inference procedure based on the wake-sleep algorithm. We experiment on 23 languages, using the Universal Dependencies corpora in a simulated low-resource setting, and find improvements of over 10{\%} absolute accuracy in some cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wolf-sonkin-etal-2018-structured">
<titleInfo>
<title>A Structured Variational Autoencoder for Contextual Morphological Inflection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Wolf-Sonkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Naradowsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Mielke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Statistical morphological inflectors are typically trained on fully supervised, type-level data. One remaining open research question is the following: How can we effectively exploit raw, token-level data to improve their performance? To this end, we introduce a novel generative latent-variable model for the semi-supervised learning of inflection generation. To enable posterior inference over the latent variables, we derive an efficient variational inference procedure based on the wake-sleep algorithm. We experiment on 23 languages, using the Universal Dependencies corpora in a simulated low-resource setting, and find improvements of over 10% absolute accuracy in some cases.</abstract>
<identifier type="citekey">wolf-sonkin-etal-2018-structured</identifier>
<identifier type="doi">10.18653/v1/P18-1245</identifier>
<location>
<url>https://aclanthology.org/P18-1245</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>2631</start>
<end>2641</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Structured Variational Autoencoder for Contextual Morphological Inflection
%A Wolf-Sonkin, Lawrence
%A Naradowsky, Jason
%A Mielke, Sabrina J.
%A Cotterell, Ryan
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F wolf-sonkin-etal-2018-structured
%X Statistical morphological inflectors are typically trained on fully supervised, type-level data. One remaining open research question is the following: How can we effectively exploit raw, token-level data to improve their performance? To this end, we introduce a novel generative latent-variable model for the semi-supervised learning of inflection generation. To enable posterior inference over the latent variables, we derive an efficient variational inference procedure based on the wake-sleep algorithm. We experiment on 23 languages, using the Universal Dependencies corpora in a simulated low-resource setting, and find improvements of over 10% absolute accuracy in some cases.
%R 10.18653/v1/P18-1245
%U https://aclanthology.org/P18-1245
%U https://doi.org/10.18653/v1/P18-1245
%P 2631-2641
Markdown (Informal)
[A Structured Variational Autoencoder for Contextual Morphological Inflection](https://aclanthology.org/P18-1245) (Wolf-Sonkin et al., ACL 2018)
ACL