@inproceedings{zhang-etal-2018-neural-coreference,
title = "Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering",
author = "Zhang, Rui and
Nogueira dos Santos, C{\'\i}cero and
Yasunaga, Michihiro and
Xiang, Bing and
Radev, Dragomir",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2017",
doi = "10.18653/v1/P18-2017",
pages = "102--107",
abstract = "Coreference resolution aims to identify in a text all mentions that refer to the same real world entity. The state-of-the-art end-to-end neural coreference model considers all text spans in a document as potential mentions and learns to link an antecedent for each possible mention. In this paper, we propose to improve the end-to-end coreference resolution system by (1) using a biaffine attention model to get antecedent scores for each possible mention, and (2) jointly optimizing the mention detection accuracy and mention clustering accuracy given the mention cluster labels. Our model achieves the state-of-the-art performance on the CoNLL-2012 shared task English test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-neural-coreference">
<titleInfo>
<title>Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cícero</namePart>
<namePart type="family">Nogueira dos Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michihiro</namePart>
<namePart type="family">Yasunaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Xiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dragomir</namePart>
<namePart type="family">Radev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Coreference resolution aims to identify in a text all mentions that refer to the same real world entity. The state-of-the-art end-to-end neural coreference model considers all text spans in a document as potential mentions and learns to link an antecedent for each possible mention. In this paper, we propose to improve the end-to-end coreference resolution system by (1) using a biaffine attention model to get antecedent scores for each possible mention, and (2) jointly optimizing the mention detection accuracy and mention clustering accuracy given the mention cluster labels. Our model achieves the state-of-the-art performance on the CoNLL-2012 shared task English test set.</abstract>
<identifier type="citekey">zhang-etal-2018-neural-coreference</identifier>
<identifier type="doi">10.18653/v1/P18-2017</identifier>
<location>
<url>https://aclanthology.org/P18-2017</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>102</start>
<end>107</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering
%A Zhang, Rui
%A Nogueira dos Santos, Cícero
%A Yasunaga, Michihiro
%A Xiang, Bing
%A Radev, Dragomir
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhang-etal-2018-neural-coreference
%X Coreference resolution aims to identify in a text all mentions that refer to the same real world entity. The state-of-the-art end-to-end neural coreference model considers all text spans in a document as potential mentions and learns to link an antecedent for each possible mention. In this paper, we propose to improve the end-to-end coreference resolution system by (1) using a biaffine attention model to get antecedent scores for each possible mention, and (2) jointly optimizing the mention detection accuracy and mention clustering accuracy given the mention cluster labels. Our model achieves the state-of-the-art performance on the CoNLL-2012 shared task English test set.
%R 10.18653/v1/P18-2017
%U https://aclanthology.org/P18-2017
%U https://doi.org/10.18653/v1/P18-2017
%P 102-107
Markdown (Informal)
[Neural Coreference Resolution with Deep Biaffine Attention by Joint Mention Detection and Mention Clustering](https://aclanthology.org/P18-2017) (Zhang et al., ACL 2018)
ACL