@inproceedings{meyers-etal-2018-dataset,
title = "A dataset for identifying actionable feedback in collaborative software development",
author = "Meyers, Benjamin S. and
Munaiah, Nuthan and
Prud{'}hommeaux, Emily and
Meneely, Andrew and
Wolff, Josephine and
Ovesdotter Alm, Cecilia and
Murukannaiah, Pradeep",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2021/",
doi = "10.18653/v1/P18-2021",
pages = "126--131",
abstract = "Software developers and testers have long struggled with how to elicit proactive responses from their coworkers when reviewing code for security vulnerabilities and errors. For a code review to be successful, it must not only identify potential problems but also elicit an active response from the colleague responsible for modifying the code. To understand the factors that contribute to this outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium project, from which we extract linguistic features of feedback that elicited responsive actions from coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate classifier to identify acted-upon comments (AUC = 0.85). Our results demonstrate the utility of our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve our understanding of how communications between colleagues can be authored to elicit positive, proactive responses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="meyers-etal-2018-dataset">
<titleInfo>
<title>A dataset for identifying actionable feedback in collaborative software development</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Meyers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuthan</namePart>
<namePart type="family">Munaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Prud’hommeaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Meneely</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josephine</namePart>
<namePart type="family">Wolff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecilia</namePart>
<namePart type="family">Ovesdotter Alm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradeep</namePart>
<namePart type="family">Murukannaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Software developers and testers have long struggled with how to elicit proactive responses from their coworkers when reviewing code for security vulnerabilities and errors. For a code review to be successful, it must not only identify potential problems but also elicit an active response from the colleague responsible for modifying the code. To understand the factors that contribute to this outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium project, from which we extract linguistic features of feedback that elicited responsive actions from coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate classifier to identify acted-upon comments (AUC = 0.85). Our results demonstrate the utility of our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve our understanding of how communications between colleagues can be authored to elicit positive, proactive responses.</abstract>
<identifier type="citekey">meyers-etal-2018-dataset</identifier>
<identifier type="doi">10.18653/v1/P18-2021</identifier>
<location>
<url>https://aclanthology.org/P18-2021/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>126</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A dataset for identifying actionable feedback in collaborative software development
%A Meyers, Benjamin S.
%A Munaiah, Nuthan
%A Prud’hommeaux, Emily
%A Meneely, Andrew
%A Wolff, Josephine
%A Ovesdotter Alm, Cecilia
%A Murukannaiah, Pradeep
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F meyers-etal-2018-dataset
%X Software developers and testers have long struggled with how to elicit proactive responses from their coworkers when reviewing code for security vulnerabilities and errors. For a code review to be successful, it must not only identify potential problems but also elicit an active response from the colleague responsible for modifying the code. To understand the factors that contribute to this outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium project, from which we extract linguistic features of feedback that elicited responsive actions from coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate classifier to identify acted-upon comments (AUC = 0.85). Our results demonstrate the utility of our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve our understanding of how communications between colleagues can be authored to elicit positive, proactive responses.
%R 10.18653/v1/P18-2021
%U https://aclanthology.org/P18-2021/
%U https://doi.org/10.18653/v1/P18-2021
%P 126-131
Markdown (Informal)
[A dataset for identifying actionable feedback in collaborative software development](https://aclanthology.org/P18-2021/) (Meyers et al., ACL 2018)
ACL
- Benjamin S. Meyers, Nuthan Munaiah, Emily Prud’hommeaux, Andrew Meneely, Josephine Wolff, Cecilia Ovesdotter Alm, and Pradeep Murukannaiah. 2018. A dataset for identifying actionable feedback in collaborative software development. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 126–131, Melbourne, Australia. Association for Computational Linguistics.