@inproceedings{michel-neubig-2018-extreme,
title = "Extreme Adaptation for Personalized Neural Machine Translation",
author = "Michel, Paul and
Neubig, Graham",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2050/",
doi = "10.18653/v1/P18-2050",
pages = "312--318",
abstract = "Every person speaks or writes their own flavor of their native language, influenced by a number of factors: the content they tend to talk about, their gender, their social status, or their geographical origin. When attempting to perform Machine Translation (MT), these variations have a significant effect on how the system should perform translation, but this is not captured well by standard one-size-fits-all models. In this paper, we propose a simple and parameter-efficient adaptation technique that only requires adapting the bias of the output softmax to each particular user of the MT system, either directly or through a factored approximation. Experiments on TED talks in three languages demonstrate improvements in translation accuracy, and better reflection of speaker traits in the target text."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="michel-neubig-2018-extreme">
<titleInfo>
<title>Extreme Adaptation for Personalized Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Michel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Every person speaks or writes their own flavor of their native language, influenced by a number of factors: the content they tend to talk about, their gender, their social status, or their geographical origin. When attempting to perform Machine Translation (MT), these variations have a significant effect on how the system should perform translation, but this is not captured well by standard one-size-fits-all models. In this paper, we propose a simple and parameter-efficient adaptation technique that only requires adapting the bias of the output softmax to each particular user of the MT system, either directly or through a factored approximation. Experiments on TED talks in three languages demonstrate improvements in translation accuracy, and better reflection of speaker traits in the target text.</abstract>
<identifier type="citekey">michel-neubig-2018-extreme</identifier>
<identifier type="doi">10.18653/v1/P18-2050</identifier>
<location>
<url>https://aclanthology.org/P18-2050/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>312</start>
<end>318</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extreme Adaptation for Personalized Neural Machine Translation
%A Michel, Paul
%A Neubig, Graham
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F michel-neubig-2018-extreme
%X Every person speaks or writes their own flavor of their native language, influenced by a number of factors: the content they tend to talk about, their gender, their social status, or their geographical origin. When attempting to perform Machine Translation (MT), these variations have a significant effect on how the system should perform translation, but this is not captured well by standard one-size-fits-all models. In this paper, we propose a simple and parameter-efficient adaptation technique that only requires adapting the bias of the output softmax to each particular user of the MT system, either directly or through a factored approximation. Experiments on TED talks in three languages demonstrate improvements in translation accuracy, and better reflection of speaker traits in the target text.
%R 10.18653/v1/P18-2050
%U https://aclanthology.org/P18-2050/
%U https://doi.org/10.18653/v1/P18-2050
%P 312-318
Markdown (Informal)
[Extreme Adaptation for Personalized Neural Machine Translation](https://aclanthology.org/P18-2050/) (Michel & Neubig, ACL 2018)
ACL