@inproceedings{wang-etal-2018-neural-hidden,
title = "Neural Hidden {M}arkov Model for Machine Translation",
author = "Wang, Weiyue and
Zhu, Derui and
Alkhouli, Tamer and
Gan, Zixuan and
Ney, Hermann",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2060/",
doi = "10.18653/v1/P18-2060",
pages = "377--382",
abstract = "Attention-based neural machine translation (NMT) models selectively focus on specific source positions to produce a translation, which brings significant improvements over pure encoder-decoder sequence-to-sequence models. This work investigates NMT while replacing the attention component. We study a neural hidden Markov model (HMM) consisting of neural network-based alignment and lexicon models, which are trained jointly using the forward-backward algorithm. We show that the attention component can be effectively replaced by the neural network alignment model and the neural HMM approach is able to provide comparable performance with the state-of-the-art attention-based models on the WMT 2017 German{\ensuremath{\leftrightarrow}}English and Chinese{\textrightarrow}English translation tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2018-neural-hidden">
<titleInfo>
<title>Neural Hidden Markov Model for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiyue</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Derui</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tamer</namePart>
<namePart type="family">Alkhouli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixuan</namePart>
<namePart type="family">Gan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hermann</namePart>
<namePart type="family">Ney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Attention-based neural machine translation (NMT) models selectively focus on specific source positions to produce a translation, which brings significant improvements over pure encoder-decoder sequence-to-sequence models. This work investigates NMT while replacing the attention component. We study a neural hidden Markov model (HMM) consisting of neural network-based alignment and lexicon models, which are trained jointly using the forward-backward algorithm. We show that the attention component can be effectively replaced by the neural network alignment model and the neural HMM approach is able to provide comparable performance with the state-of-the-art attention-based models on the WMT 2017 German\ensuremathłeftrightarrowEnglish and Chinese→English translation tasks.</abstract>
<identifier type="citekey">wang-etal-2018-neural-hidden</identifier>
<identifier type="doi">10.18653/v1/P18-2060</identifier>
<location>
<url>https://aclanthology.org/P18-2060/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>377</start>
<end>382</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Hidden Markov Model for Machine Translation
%A Wang, Weiyue
%A Zhu, Derui
%A Alkhouli, Tamer
%A Gan, Zixuan
%A Ney, Hermann
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F wang-etal-2018-neural-hidden
%X Attention-based neural machine translation (NMT) models selectively focus on specific source positions to produce a translation, which brings significant improvements over pure encoder-decoder sequence-to-sequence models. This work investigates NMT while replacing the attention component. We study a neural hidden Markov model (HMM) consisting of neural network-based alignment and lexicon models, which are trained jointly using the forward-backward algorithm. We show that the attention component can be effectively replaced by the neural network alignment model and the neural HMM approach is able to provide comparable performance with the state-of-the-art attention-based models on the WMT 2017 German\ensuremathłeftrightarrowEnglish and Chinese→English translation tasks.
%R 10.18653/v1/P18-2060
%U https://aclanthology.org/P18-2060/
%U https://doi.org/10.18653/v1/P18-2060
%P 377-382
Markdown (Informal)
[Neural Hidden Markov Model for Machine Translation](https://aclanthology.org/P18-2060/) (Wang et al., ACL 2018)
ACL
- Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan Gan, and Hermann Ney. 2018. Neural Hidden Markov Model for Machine Translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 377–382, Melbourne, Australia. Association for Computational Linguistics.