@inproceedings{asada-etal-2018-enhancing,
title = "Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information",
author = "Asada, Masaki and
Miwa, Makoto and
Sasaki, Yutaka",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2108",
doi = "10.18653/v1/P18-2108",
pages = "680--685",
abstract = "We propose a novel neural method to extract drug-drug interactions (DDIs) from texts using external drug molecular structure information. We encode textual drug pairs with convolutional neural networks and their molecular pairs with graph convolutional networks (GCNs), and then we concatenate the outputs of these two networks. In the experiments, we show that GCNs can predict DDIs from the molecular structures of drugs in high accuracy and the molecular information can enhance text-based DDI extraction by 2.39 percent points in the F-score on the DDIExtraction 2013 shared task data set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asada-etal-2018-enhancing">
<titleInfo>
<title>Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaki</namePart>
<namePart type="family">Asada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel neural method to extract drug-drug interactions (DDIs) from texts using external drug molecular structure information. We encode textual drug pairs with convolutional neural networks and their molecular pairs with graph convolutional networks (GCNs), and then we concatenate the outputs of these two networks. In the experiments, we show that GCNs can predict DDIs from the molecular structures of drugs in high accuracy and the molecular information can enhance text-based DDI extraction by 2.39 percent points in the F-score on the DDIExtraction 2013 shared task data set.</abstract>
<identifier type="citekey">asada-etal-2018-enhancing</identifier>
<identifier type="doi">10.18653/v1/P18-2108</identifier>
<location>
<url>https://aclanthology.org/P18-2108</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>680</start>
<end>685</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information
%A Asada, Masaki
%A Miwa, Makoto
%A Sasaki, Yutaka
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F asada-etal-2018-enhancing
%X We propose a novel neural method to extract drug-drug interactions (DDIs) from texts using external drug molecular structure information. We encode textual drug pairs with convolutional neural networks and their molecular pairs with graph convolutional networks (GCNs), and then we concatenate the outputs of these two networks. In the experiments, we show that GCNs can predict DDIs from the molecular structures of drugs in high accuracy and the molecular information can enhance text-based DDI extraction by 2.39 percent points in the F-score on the DDIExtraction 2013 shared task data set.
%R 10.18653/v1/P18-2108
%U https://aclanthology.org/P18-2108
%U https://doi.org/10.18653/v1/P18-2108
%P 680-685
Markdown (Informal)
[Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information](https://aclanthology.org/P18-2108) (Asada et al., ACL 2018)
ACL