@inproceedings{bommasani-2019-long,
title = "Long-Distance Dependencies Don`t Have to Be Long: Simplifying through Provably (Approximately) Optimal Permutations",
author = "Bommasani, Rishi",
editor = "Alva-Manchego, Fernando and
Choi, Eunsol and
Khashabi, Daniel",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-2012/",
doi = "10.18653/v1/P19-2012",
pages = "89--99",
abstract = "Neural models at the sentence level often operate on the constituent words/tokens in a way that encodes the inductive bias of processing the input in a similar fashion to how humans do. However, there is no guarantee that the standard ordering of words is computationally efficient or optimal. To help mitigate this, we consider a dependency parse as a proxy for the inter-word dependencies in a sentence and simplify the sentence with respect to combinatorial objectives imposed on the sentence-parse pair. The associated optimization results in permuted sentences that are provably (approximately) optimal with respect to minimizing dependency parse lengths and that are demonstrably simpler. We evaluate our general-purpose permutations within a fine-tuning schema for the downstream task of subjectivity analysis. Our fine-tuned baselines reflect a new state of the art for the SUBJ dataset and the permutations we introduce lead to further improvements with a 2.0{\%} increase in classification accuracy (absolute) and a 45{\%} reduction in classification error (relative) over the previous state of the art."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bommasani-2019-long">
<titleInfo>
<title>Long-Distance Dependencies Don‘t Have to Be Long: Simplifying through Provably (Approximately) Optimal Permutations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rishi</namePart>
<namePart type="family">Bommasani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fernando</namePart>
<namePart type="family">Alva-Manchego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Khashabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural models at the sentence level often operate on the constituent words/tokens in a way that encodes the inductive bias of processing the input in a similar fashion to how humans do. However, there is no guarantee that the standard ordering of words is computationally efficient or optimal. To help mitigate this, we consider a dependency parse as a proxy for the inter-word dependencies in a sentence and simplify the sentence with respect to combinatorial objectives imposed on the sentence-parse pair. The associated optimization results in permuted sentences that are provably (approximately) optimal with respect to minimizing dependency parse lengths and that are demonstrably simpler. We evaluate our general-purpose permutations within a fine-tuning schema for the downstream task of subjectivity analysis. Our fine-tuned baselines reflect a new state of the art for the SUBJ dataset and the permutations we introduce lead to further improvements with a 2.0% increase in classification accuracy (absolute) and a 45% reduction in classification error (relative) over the previous state of the art.</abstract>
<identifier type="citekey">bommasani-2019-long</identifier>
<identifier type="doi">10.18653/v1/P19-2012</identifier>
<location>
<url>https://aclanthology.org/P19-2012/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>89</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Long-Distance Dependencies Don‘t Have to Be Long: Simplifying through Provably (Approximately) Optimal Permutations
%A Bommasani, Rishi
%Y Alva-Manchego, Fernando
%Y Choi, Eunsol
%Y Khashabi, Daniel
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F bommasani-2019-long
%X Neural models at the sentence level often operate on the constituent words/tokens in a way that encodes the inductive bias of processing the input in a similar fashion to how humans do. However, there is no guarantee that the standard ordering of words is computationally efficient or optimal. To help mitigate this, we consider a dependency parse as a proxy for the inter-word dependencies in a sentence and simplify the sentence with respect to combinatorial objectives imposed on the sentence-parse pair. The associated optimization results in permuted sentences that are provably (approximately) optimal with respect to minimizing dependency parse lengths and that are demonstrably simpler. We evaluate our general-purpose permutations within a fine-tuning schema for the downstream task of subjectivity analysis. Our fine-tuned baselines reflect a new state of the art for the SUBJ dataset and the permutations we introduce lead to further improvements with a 2.0% increase in classification accuracy (absolute) and a 45% reduction in classification error (relative) over the previous state of the art.
%R 10.18653/v1/P19-2012
%U https://aclanthology.org/P19-2012/
%U https://doi.org/10.18653/v1/P19-2012
%P 89-99
Markdown (Informal)
[Long-Distance Dependencies Don’t Have to Be Long: Simplifying through Provably (Approximately) Optimal Permutations](https://aclanthology.org/P19-2012/) (Bommasani, ACL 2019)
ACL