@article{li-etal-2013-data,
title = "Data-Driven Metaphor Recognition and Explanation",
author = "Li, Hongsong and
Zhu, Kenny Q. and
Wang, Haixun",
editor = "Lin, Dekang and
Collins, Michael",
journal = "Transactions of the Association for Computational Linguistics",
volume = "1",
year = "2013",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q13-1031",
doi = "10.1162/tacl_a_00235",
pages = "379--390",
abstract = "Recognizing metaphors and identifying the source-target mappings is an important task as metaphorical text poses a big challenge for machine reading. To address this problem, we automatically acquire a metaphor knowledge base and an isA knowledge base from billions of web pages. Using the knowledge bases, we develop an inference mechanism to recognize and explain the metaphors in the text. To our knowledge, this is the first purely data-driven approach of probabilistic metaphor acquisition, recognition, and explanation. Our results shows that it significantly outperforms other state-of-the-art methods in recognizing and explaining metaphors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2013-data">
<titleInfo>
<title>Data-Driven Metaphor Recognition and Explanation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongsong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenny</namePart>
<namePart type="given">Q</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haixun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2013</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Recognizing metaphors and identifying the source-target mappings is an important task as metaphorical text poses a big challenge for machine reading. To address this problem, we automatically acquire a metaphor knowledge base and an isA knowledge base from billions of web pages. Using the knowledge bases, we develop an inference mechanism to recognize and explain the metaphors in the text. To our knowledge, this is the first purely data-driven approach of probabilistic metaphor acquisition, recognition, and explanation. Our results shows that it significantly outperforms other state-of-the-art methods in recognizing and explaining metaphors.</abstract>
<identifier type="citekey">li-etal-2013-data</identifier>
<identifier type="doi">10.1162/tacl_a_00235</identifier>
<location>
<url>https://aclanthology.org/Q13-1031</url>
</location>
<part>
<date>2013</date>
<detail type="volume"><number>1</number></detail>
<extent unit="page">
<start>379</start>
<end>390</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Data-Driven Metaphor Recognition and Explanation
%A Li, Hongsong
%A Zhu, Kenny Q.
%A Wang, Haixun
%J Transactions of the Association for Computational Linguistics
%D 2013
%V 1
%I MIT Press
%C Cambridge, MA
%F li-etal-2013-data
%X Recognizing metaphors and identifying the source-target mappings is an important task as metaphorical text poses a big challenge for machine reading. To address this problem, we automatically acquire a metaphor knowledge base and an isA knowledge base from billions of web pages. Using the knowledge bases, we develop an inference mechanism to recognize and explain the metaphors in the text. To our knowledge, this is the first purely data-driven approach of probabilistic metaphor acquisition, recognition, and explanation. Our results shows that it significantly outperforms other state-of-the-art methods in recognizing and explaining metaphors.
%R 10.1162/tacl_a_00235
%U https://aclanthology.org/Q13-1031
%U https://doi.org/10.1162/tacl_a_00235
%P 379-390
Markdown (Informal)
[Data-Driven Metaphor Recognition and Explanation](https://aclanthology.org/Q13-1031) (Li et al., TACL 2013)
ACL