@article{yogatama-etal-2014-dynamic,
title = "Dynamic Language Models for Streaming Text",
author = "Yogatama, Dani and
Wang, Chong and
Routledge, Bryan R. and
Smith, Noah A. and
Xing, Eric P.",
editor = "Lin, Dekang and
Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "2",
year = "2014",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q14-1015/",
doi = "10.1162/tacl_a_00175",
pages = "181--192",
abstract = "We present a probabilistic language model that captures temporal dynamics and conditions on arbitrary non-linguistic context features. These context features serve as important indicators of language changes that are otherwise difficult to capture using text data by itself. We learn our model in an efficient online fashion that is scalable for large, streaming data. With five streaming datasets from two different genres{---}economics news articles and social media{---}we evaluate our model on the task of sequential language modeling. Our model consistently outperforms competing models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yogatama-etal-2014-dynamic">
<titleInfo>
<title>Dynamic Language Models for Streaming Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dani</namePart>
<namePart type="family">Yogatama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bryan</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Routledge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Xing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a probabilistic language model that captures temporal dynamics and conditions on arbitrary non-linguistic context features. These context features serve as important indicators of language changes that are otherwise difficult to capture using text data by itself. We learn our model in an efficient online fashion that is scalable for large, streaming data. With five streaming datasets from two different genres—economics news articles and social media—we evaluate our model on the task of sequential language modeling. Our model consistently outperforms competing models.</abstract>
<identifier type="citekey">yogatama-etal-2014-dynamic</identifier>
<identifier type="doi">10.1162/tacl_a_00175</identifier>
<location>
<url>https://aclanthology.org/Q14-1015/</url>
</location>
<part>
<date>2014</date>
<detail type="volume"><number>2</number></detail>
<extent unit="page">
<start>181</start>
<end>192</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Dynamic Language Models for Streaming Text
%A Yogatama, Dani
%A Wang, Chong
%A Routledge, Bryan R.
%A Smith, Noah A.
%A Xing, Eric P.
%J Transactions of the Association for Computational Linguistics
%D 2014
%V 2
%I MIT Press
%C Cambridge, MA
%F yogatama-etal-2014-dynamic
%X We present a probabilistic language model that captures temporal dynamics and conditions on arbitrary non-linguistic context features. These context features serve as important indicators of language changes that are otherwise difficult to capture using text data by itself. We learn our model in an efficient online fashion that is scalable for large, streaming data. With five streaming datasets from two different genres—economics news articles and social media—we evaluate our model on the task of sequential language modeling. Our model consistently outperforms competing models.
%R 10.1162/tacl_a_00175
%U https://aclanthology.org/Q14-1015/
%U https://doi.org/10.1162/tacl_a_00175
%P 181-192
Markdown (Informal)
[Dynamic Language Models for Streaming Text](https://aclanthology.org/Q14-1015/) (Yogatama et al., TACL 2014)
ACL