@article{lee-etal-2015-unsupervised,
title = "Unsupervised Lexicon Discovery from Acoustic Input",
author = "Lee, Chia-ying and
O{'}Donnell, Timothy J. and
Glass, James",
editor = "Collins, Michael and
Lee, Lillian",
journal = "Transactions of the Association for Computational Linguistics",
volume = "3",
year = "2015",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q15-1028/",
doi = "10.1162/tacl_a_00146",
pages = "389--403",
abstract = "We present a model of unsupervised phonological lexicon discovery{---}the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model`s behavior and the kinds of linguistic structures it learns."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2015-unsupervised">
<titleInfo>
<title>Unsupervised Lexicon Discovery from Acoustic Input</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chia-ying</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="given">J</namePart>
<namePart type="family">O’Donnell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2015</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a model of unsupervised phonological lexicon discovery—the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model‘s behavior and the kinds of linguistic structures it learns.</abstract>
<identifier type="citekey">lee-etal-2015-unsupervised</identifier>
<identifier type="doi">10.1162/tacl_a_00146</identifier>
<location>
<url>https://aclanthology.org/Q15-1028/</url>
</location>
<part>
<date>2015</date>
<detail type="volume"><number>3</number></detail>
<extent unit="page">
<start>389</start>
<end>403</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Unsupervised Lexicon Discovery from Acoustic Input
%A Lee, Chia-ying
%A O’Donnell, Timothy J.
%A Glass, James
%J Transactions of the Association for Computational Linguistics
%D 2015
%V 3
%I MIT Press
%C Cambridge, MA
%F lee-etal-2015-unsupervised
%X We present a model of unsupervised phonological lexicon discovery—the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model‘s behavior and the kinds of linguistic structures it learns.
%R 10.1162/tacl_a_00146
%U https://aclanthology.org/Q15-1028/
%U https://doi.org/10.1162/tacl_a_00146
%P 389-403
Markdown (Informal)
[Unsupervised Lexicon Discovery from Acoustic Input](https://aclanthology.org/Q15-1028/) (Lee et al., TACL 2015)
ACL