@article{lee-etal-2015-unsupervised,
    title = "Unsupervised Lexicon Discovery from Acoustic Input",
    author = "Lee, Chia-ying  and
      O{'}Donnell, Timothy J.  and
      Glass, James",
    editor = "Collins, Michael  and
      Lee, Lillian",
    journal = "Transactions of the Association for Computational Linguistics",
    volume = "3",
    year = "2015",
    address = "Cambridge, MA",
    publisher = "MIT Press",
    url = "https://aclanthology.org/Q15-1028/",
    doi = "10.1162/tacl_a_00146",
    pages = "389--403",
    abstract = "We present a model of unsupervised phonological lexicon discovery{---}the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model{'}s behavior and the kinds of linguistic structures it learns."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2015-unsupervised">
    <titleInfo>
        <title>Unsupervised Lexicon Discovery from Acoustic Input</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chia-ying</namePart>
        <namePart type="family">Lee</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Timothy</namePart>
        <namePart type="given">J</namePart>
        <namePart type="family">O’Donnell</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">James</namePart>
        <namePart type="family">Glass</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2015</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <genre authority="bibutilsgt">journal article</genre>
    <relatedItem type="host">
        <titleInfo>
            <title>Transactions of the Association for Computational Linguistics</title>
        </titleInfo>
        <originInfo>
            <issuance>continuing</issuance>
            <publisher>MIT Press</publisher>
            <place>
                <placeTerm type="text">Cambridge, MA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">periodical</genre>
        <genre authority="bibutilsgt">academic journal</genre>
    </relatedItem>
    <abstract>We present a model of unsupervised phonological lexicon discovery—the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model’s behavior and the kinds of linguistic structures it learns.</abstract>
    <identifier type="citekey">lee-etal-2015-unsupervised</identifier>
    <identifier type="doi">10.1162/tacl_a_00146</identifier>
    <location>
        <url>https://aclanthology.org/Q15-1028/</url>
    </location>
    <part>
        <date>2015</date>
        <detail type="volume"><number>3</number></detail>
        <extent unit="page">
            <start>389</start>
            <end>403</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Journal Article
%T Unsupervised Lexicon Discovery from Acoustic Input
%A Lee, Chia-ying
%A O’Donnell, Timothy J.
%A Glass, James
%J Transactions of the Association for Computational Linguistics
%D 2015
%V 3
%I MIT Press
%C Cambridge, MA
%F lee-etal-2015-unsupervised
%X We present a model of unsupervised phonological lexicon discovery—the problem of simultaneously learning phoneme-like and word-like units from acoustic input. Our model builds on earlier models of unsupervised phone-like unit discovery from acoustic data (Lee and Glass, 2012), and unsupervised symbolic lexicon discovery using the Adaptor Grammar framework (Johnson et al., 2006), integrating these earlier approaches using a probabilistic model of phonological variation. We show that the model is competitive with state-of-the-art spoken term discovery systems, and present analyses exploring the model’s behavior and the kinds of linguistic structures it learns.
%R 10.1162/tacl_a_00146
%U https://aclanthology.org/Q15-1028/
%U https://doi.org/10.1162/tacl_a_00146
%P 389-403
Markdown (Informal)
[Unsupervised Lexicon Discovery from Acoustic Input](https://aclanthology.org/Q15-1028/) (Lee et al., TACL 2015)
ACL