@article{osborne-etal-2016-encoding,
title = "Encoding Prior Knowledge with Eigenword Embeddings",
author = "Osborne, Dominique and
Narayan, Shashi and
Cohen, Shay B.",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "4",
year = "2016",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q16-1030/",
doi = "10.1162/tacl_a_00108",
pages = "417--430",
abstract = "Canonical correlation analysis (CCA) is a method for reducing the dimension of data represented using two views. It has been previously used to derive word embeddings, where one view indicates a word, and the other view indicates its context. We describe a way to incorporate prior knowledge into CCA, give a theoretical justification for it, and test it by deriving word embeddings and evaluating them on a myriad of datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osborne-etal-2016-encoding">
<titleInfo>
<title>Encoding Prior Knowledge with Eigenword Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Osborne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="family">Narayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Canonical correlation analysis (CCA) is a method for reducing the dimension of data represented using two views. It has been previously used to derive word embeddings, where one view indicates a word, and the other view indicates its context. We describe a way to incorporate prior knowledge into CCA, give a theoretical justification for it, and test it by deriving word embeddings and evaluating them on a myriad of datasets.</abstract>
<identifier type="citekey">osborne-etal-2016-encoding</identifier>
<identifier type="doi">10.1162/tacl_a_00108</identifier>
<location>
<url>https://aclanthology.org/Q16-1030/</url>
</location>
<part>
<date>2016</date>
<detail type="volume"><number>4</number></detail>
<extent unit="page">
<start>417</start>
<end>430</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Encoding Prior Knowledge with Eigenword Embeddings
%A Osborne, Dominique
%A Narayan, Shashi
%A Cohen, Shay B.
%J Transactions of the Association for Computational Linguistics
%D 2016
%V 4
%I MIT Press
%C Cambridge, MA
%F osborne-etal-2016-encoding
%X Canonical correlation analysis (CCA) is a method for reducing the dimension of data represented using two views. It has been previously used to derive word embeddings, where one view indicates a word, and the other view indicates its context. We describe a way to incorporate prior knowledge into CCA, give a theoretical justification for it, and test it by deriving word embeddings and evaluating them on a myriad of datasets.
%R 10.1162/tacl_a_00108
%U https://aclanthology.org/Q16-1030/
%U https://doi.org/10.1162/tacl_a_00108
%P 417-430
Markdown (Informal)
[Encoding Prior Knowledge with Eigenword Embeddings](https://aclanthology.org/Q16-1030/) (Osborne et al., TACL 2016)
ACL