@article{gorman-sproat-2016-minimally,
title = "Minimally Supervised Number Normalization",
author = "Gorman, Kyle and
Sproat, Richard",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "4",
year = "2016",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q16-1036",
doi = "10.1162/tacl_a_00114",
pages = "507--519",
abstract = "We propose two models for verbalizing numbers, a key component in speech recognition and synthesis systems. The first model uses an end-to-end recurrent neural network. The second model, drawing inspiration from the linguistics literature, uses finite-state transducers constructed with a minimal amount of training data. While both models achieve near-perfect performance, the latter model can be trained using several orders of magnitude less data than the former, making it particularly useful for low-resource languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gorman-sproat-2016-minimally">
<titleInfo>
<title>Minimally Supervised Number Normalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Sproat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We propose two models for verbalizing numbers, a key component in speech recognition and synthesis systems. The first model uses an end-to-end recurrent neural network. The second model, drawing inspiration from the linguistics literature, uses finite-state transducers constructed with a minimal amount of training data. While both models achieve near-perfect performance, the latter model can be trained using several orders of magnitude less data than the former, making it particularly useful for low-resource languages.</abstract>
<identifier type="citekey">gorman-sproat-2016-minimally</identifier>
<identifier type="doi">10.1162/tacl_a_00114</identifier>
<location>
<url>https://aclanthology.org/Q16-1036</url>
</location>
<part>
<date>2016</date>
<detail type="volume"><number>4</number></detail>
<extent unit="page">
<start>507</start>
<end>519</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Minimally Supervised Number Normalization
%A Gorman, Kyle
%A Sproat, Richard
%J Transactions of the Association for Computational Linguistics
%D 2016
%V 4
%I MIT Press
%C Cambridge, MA
%F gorman-sproat-2016-minimally
%X We propose two models for verbalizing numbers, a key component in speech recognition and synthesis systems. The first model uses an end-to-end recurrent neural network. The second model, drawing inspiration from the linguistics literature, uses finite-state transducers constructed with a minimal amount of training data. While both models achieve near-perfect performance, the latter model can be trained using several orders of magnitude less data than the former, making it particularly useful for low-resource languages.
%R 10.1162/tacl_a_00114
%U https://aclanthology.org/Q16-1036
%U https://doi.org/10.1162/tacl_a_00114
%P 507-519
Markdown (Informal)
[Minimally Supervised Number Normalization](https://aclanthology.org/Q16-1036) (Gorman & Sproat, TACL 2016)
ACL