@article{artetxe-schwenk-2019-massively,
title = "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond",
author = "Artetxe, Mikel and
Schwenk, Holger",
editor = "Lee, Lillian and
Johnson, Mark and
Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "7",
year = "2019",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q19-1038",
doi = "10.1162/tacl_a_00288",
pages = "597--610",
abstract = "We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared byte-pair encoding vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI data set), cross-lingual document classification (MLDoc data set), and parallel corpus mining (BUCC data set) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low- resource languages. Our implementation, the pre-trained encoder, and the multilingual test set are available at \url{https://github.com/facebookresearch/LASER}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="artetxe-schwenk-2019-massively">
<titleInfo>
<title>Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Artetxe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Holger</namePart>
<namePart type="family">Schwenk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared byte-pair encoding vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI data set), cross-lingual document classification (MLDoc data set), and parallel corpus mining (BUCC data set) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low- resource languages. Our implementation, the pre-trained encoder, and the multilingual test set are available at https://github.com/facebookresearch/LASER.</abstract>
<identifier type="citekey">artetxe-schwenk-2019-massively</identifier>
<identifier type="doi">10.1162/tacl_a_00288</identifier>
<location>
<url>https://aclanthology.org/Q19-1038</url>
</location>
<part>
<date>2019</date>
<detail type="volume"><number>7</number></detail>
<extent unit="page">
<start>597</start>
<end>610</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond
%A Artetxe, Mikel
%A Schwenk, Holger
%J Transactions of the Association for Computational Linguistics
%D 2019
%V 7
%I MIT Press
%C Cambridge, MA
%F artetxe-schwenk-2019-massively
%X We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared byte-pair encoding vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI data set), cross-lingual document classification (MLDoc data set), and parallel corpus mining (BUCC data set) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low- resource languages. Our implementation, the pre-trained encoder, and the multilingual test set are available at https://github.com/facebookresearch/LASER.
%R 10.1162/tacl_a_00288
%U https://aclanthology.org/Q19-1038
%U https://doi.org/10.1162/tacl_a_00288
%P 597-610
Markdown (Informal)
[Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://aclanthology.org/Q19-1038) (Artetxe & Schwenk, TACL 2019)
ACL