@inproceedings{gao-huang-2017-detecting,
title = "Detecting Online Hate Speech Using Context Aware Models",
author = "Gao, Lei and
Huang, Ruihong",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_036",
doi = "10.26615/978-954-452-049-6_036",
pages = "260--266",
abstract = "In the wake of a polarizing election, the cyber world is laden with hate speech. Context accompanying a hate speech text is useful for identifying hate speech, which however has been largely overlooked in existing datasets and hate speech detection models. In this paper, we provide an annotated corpus of hate speech with context information well kept. Then we propose two types of hate speech detection models that incorporate context information, a logistic regression model with context features and a neural network model with learning components for context. Our evaluation shows that both models outperform a strong baseline by around 3{\%} to 4{\%} in F1 score and combining these two models further improve the performance by another 7{\%} in F1 score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gao-huang-2017-detecting">
<titleInfo>
<title>Detecting Online Hate Speech Using Context Aware Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the wake of a polarizing election, the cyber world is laden with hate speech. Context accompanying a hate speech text is useful for identifying hate speech, which however has been largely overlooked in existing datasets and hate speech detection models. In this paper, we provide an annotated corpus of hate speech with context information well kept. Then we propose two types of hate speech detection models that incorporate context information, a logistic regression model with context features and a neural network model with learning components for context. Our evaluation shows that both models outperform a strong baseline by around 3% to 4% in F1 score and combining these two models further improve the performance by another 7% in F1 score.</abstract>
<identifier type="citekey">gao-huang-2017-detecting</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_036</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>260</start>
<end>266</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Online Hate Speech Using Context Aware Models
%A Gao, Lei
%A Huang, Ruihong
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F gao-huang-2017-detecting
%X In the wake of a polarizing election, the cyber world is laden with hate speech. Context accompanying a hate speech text is useful for identifying hate speech, which however has been largely overlooked in existing datasets and hate speech detection models. In this paper, we provide an annotated corpus of hate speech with context information well kept. Then we propose two types of hate speech detection models that incorporate context information, a logistic regression model with context features and a neural network model with learning components for context. Our evaluation shows that both models outperform a strong baseline by around 3% to 4% in F1 score and combining these two models further improve the performance by another 7% in F1 score.
%R 10.26615/978-954-452-049-6_036
%U https://doi.org/10.26615/978-954-452-049-6_036
%P 260-266
Markdown (Informal)
[Detecting Online Hate Speech Using Context Aware Models](https://doi.org/10.26615/978-954-452-049-6_036) (Gao & Huang, RANLP 2017)
ACL