@inproceedings{konkol-2017-joint,
title = "Joint Unsupervised Learning of Semantic Representation of Words and Roles in Dependency Trees",
author = "Konkol, Michal",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_052",
doi = "10.26615/978-954-452-049-6_052",
pages = "394--400",
abstract = "In this paper, we introduce WoRel, a model that jointly learns word embeddings and a semantic representation of word relations. The model learns from plain text sentences and their dependency parse trees. The word embeddings produced by WoRel outperform Skip-Gram and GloVe in word similarity and syntactical word analogy tasks and have comparable results on word relatedness and semantic word analogy tasks. We show that the semantic representation of relations enables us to express the meaning of phrases and is a promising research direction for semantics at the sentence level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="konkol-2017-joint">
<titleInfo>
<title>Joint Unsupervised Learning of Semantic Representation of Words and Roles in Dependency Trees</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Konkol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we introduce WoRel, a model that jointly learns word embeddings and a semantic representation of word relations. The model learns from plain text sentences and their dependency parse trees. The word embeddings produced by WoRel outperform Skip-Gram and GloVe in word similarity and syntactical word analogy tasks and have comparable results on word relatedness and semantic word analogy tasks. We show that the semantic representation of relations enables us to express the meaning of phrases and is a promising research direction for semantics at the sentence level.</abstract>
<identifier type="citekey">konkol-2017-joint</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_052</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>394</start>
<end>400</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Unsupervised Learning of Semantic Representation of Words and Roles in Dependency Trees
%A Konkol, Michal
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F konkol-2017-joint
%X In this paper, we introduce WoRel, a model that jointly learns word embeddings and a semantic representation of word relations. The model learns from plain text sentences and their dependency parse trees. The word embeddings produced by WoRel outperform Skip-Gram and GloVe in word similarity and syntactical word analogy tasks and have comparable results on word relatedness and semantic word analogy tasks. We show that the semantic representation of relations enables us to express the meaning of phrases and is a promising research direction for semantics at the sentence level.
%R 10.26615/978-954-452-049-6_052
%U https://doi.org/10.26615/978-954-452-049-6_052
%P 394-400
Markdown (Informal)
[Joint Unsupervised Learning of Semantic Representation of Words and Roles in Dependency Trees](https://doi.org/10.26615/978-954-452-049-6_052) (Konkol, RANLP 2017)
ACL