@inproceedings{moreno-etal-2017-domain,
title = "A Domain and Language Independent Named Entity Classification Approach Based on Profiles and Local Information",
author = "Moreno, Isabel and
Rom{\'a}-Ferri, Mar{\'\i}a Teresa and
Moreda Pozo, Paloma",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing, {RANLP} 2017",
month = sep,
year = "2017",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://doi.org/10.26615/978-954-452-049-6_067",
doi = "10.26615/978-954-452-049-6_067",
pages = "510--518",
abstract = "This paper presents a Named Entity Classification system, which employs machine learning. Our methodology employs local entity information and profiles as feature set. All features are generated in an unsupervised manner. It is tested on two different data sets: (i) DrugSemantics Spanish corpus (Overall F1 = 74.92), whose results are in-line with the state of the art without employing external domain-specific resources. And, (ii) English CONLL2003 dataset (Overall F1 = 81.40), although our results are lower than previous work, these are reached without external knowledge or complex linguistic analysis. Last, using the same configuration for the two corpora, the difference of overall F1 is only 6.48 points (DrugSemantics = 74.92 versus CoNLL2003 = 81.40). Thus, this result supports our hypothesis that our approach is language and domain independent and does not require any external knowledge or complex linguistic analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moreno-etal-2017-domain">
<titleInfo>
<title>A Domain and Language Independent Named Entity Classification Approach Based on Profiles and Local Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">María</namePart>
<namePart type="given">Teresa</namePart>
<namePart type="family">Romá-Ferri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paloma</namePart>
<namePart type="family">Moreda Pozo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a Named Entity Classification system, which employs machine learning. Our methodology employs local entity information and profiles as feature set. All features are generated in an unsupervised manner. It is tested on two different data sets: (i) DrugSemantics Spanish corpus (Overall F1 = 74.92), whose results are in-line with the state of the art without employing external domain-specific resources. And, (ii) English CONLL2003 dataset (Overall F1 = 81.40), although our results are lower than previous work, these are reached without external knowledge or complex linguistic analysis. Last, using the same configuration for the two corpora, the difference of overall F1 is only 6.48 points (DrugSemantics = 74.92 versus CoNLL2003 = 81.40). Thus, this result supports our hypothesis that our approach is language and domain independent and does not require any external knowledge or complex linguistic analysis.</abstract>
<identifier type="citekey">moreno-etal-2017-domain</identifier>
<identifier type="doi">10.26615/978-954-452-049-6_067</identifier>
<part>
<date>2017-09</date>
<extent unit="page">
<start>510</start>
<end>518</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Domain and Language Independent Named Entity Classification Approach Based on Profiles and Local Information
%A Moreno, Isabel
%A Romá-Ferri, María Teresa
%A Moreda Pozo, Paloma
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017
%D 2017
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F moreno-etal-2017-domain
%X This paper presents a Named Entity Classification system, which employs machine learning. Our methodology employs local entity information and profiles as feature set. All features are generated in an unsupervised manner. It is tested on two different data sets: (i) DrugSemantics Spanish corpus (Overall F1 = 74.92), whose results are in-line with the state of the art without employing external domain-specific resources. And, (ii) English CONLL2003 dataset (Overall F1 = 81.40), although our results are lower than previous work, these are reached without external knowledge or complex linguistic analysis. Last, using the same configuration for the two corpora, the difference of overall F1 is only 6.48 points (DrugSemantics = 74.92 versus CoNLL2003 = 81.40). Thus, this result supports our hypothesis that our approach is language and domain independent and does not require any external knowledge or complex linguistic analysis.
%R 10.26615/978-954-452-049-6_067
%U https://doi.org/10.26615/978-954-452-049-6_067
%P 510-518
Markdown (Informal)
[A Domain and Language Independent Named Entity Classification Approach Based on Profiles and Local Information](https://doi.org/10.26615/978-954-452-049-6_067) (Moreno et al., RANLP 2017)
ACL