@inproceedings{ahmadnia-dorr-2019-enhancing,
title = "Enhancing Phrase-Based Statistical Machine Translation by Learning Phrase Representations Using Long Short-Term Memory Network",
author = "Ahmadnia, Benyamin and
Dorr, Bonnie",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1004/",
doi = "10.26615/978-954-452-056-4_004",
pages = "25--32",
abstract = "Phrases play a key role in Machine Translation (MT). In this paper, we apply a Long Short-Term Memory (LSTM) model over conventional Phrase-Based Statistical MT (PBSMT). The core idea is to use an LSTM encoder-decoder to score the phrase table generated by the PBSMT decoder. Given a source sequence, the encoder and decoder are jointly trained in order to maximize the conditional probability of a target sequence. Analytically, the performance of a PBSMT system is enhanced by using the conditional probabilities of phrase pairs computed by an LSTM encoder-decoder as an additional feature in the existing log-linear model. We compare the performance of the phrase tables in the PBSMT to the performance of the proposed LSTM and observe its positive impact on translation quality. We construct a PBSMT model using the Moses decoder and enrich the Language Model (LM) utilizing an external dataset. We then rank the phrase tables using an LSTM-based encoder-decoder. This method produces a gain of up to 3.14 BLEU score on the test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ahmadnia-dorr-2019-enhancing">
<titleInfo>
<title>Enhancing Phrase-Based Statistical Machine Translation by Learning Phrase Representations Using Long Short-Term Memory Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Benyamin</namePart>
<namePart type="family">Ahmadnia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Dorr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Phrases play a key role in Machine Translation (MT). In this paper, we apply a Long Short-Term Memory (LSTM) model over conventional Phrase-Based Statistical MT (PBSMT). The core idea is to use an LSTM encoder-decoder to score the phrase table generated by the PBSMT decoder. Given a source sequence, the encoder and decoder are jointly trained in order to maximize the conditional probability of a target sequence. Analytically, the performance of a PBSMT system is enhanced by using the conditional probabilities of phrase pairs computed by an LSTM encoder-decoder as an additional feature in the existing log-linear model. We compare the performance of the phrase tables in the PBSMT to the performance of the proposed LSTM and observe its positive impact on translation quality. We construct a PBSMT model using the Moses decoder and enrich the Language Model (LM) utilizing an external dataset. We then rank the phrase tables using an LSTM-based encoder-decoder. This method produces a gain of up to 3.14 BLEU score on the test set.</abstract>
<identifier type="citekey">ahmadnia-dorr-2019-enhancing</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_004</identifier>
<location>
<url>https://aclanthology.org/R19-1004/</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>25</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Phrase-Based Statistical Machine Translation by Learning Phrase Representations Using Long Short-Term Memory Network
%A Ahmadnia, Benyamin
%A Dorr, Bonnie
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F ahmadnia-dorr-2019-enhancing
%X Phrases play a key role in Machine Translation (MT). In this paper, we apply a Long Short-Term Memory (LSTM) model over conventional Phrase-Based Statistical MT (PBSMT). The core idea is to use an LSTM encoder-decoder to score the phrase table generated by the PBSMT decoder. Given a source sequence, the encoder and decoder are jointly trained in order to maximize the conditional probability of a target sequence. Analytically, the performance of a PBSMT system is enhanced by using the conditional probabilities of phrase pairs computed by an LSTM encoder-decoder as an additional feature in the existing log-linear model. We compare the performance of the phrase tables in the PBSMT to the performance of the proposed LSTM and observe its positive impact on translation quality. We construct a PBSMT model using the Moses decoder and enrich the Language Model (LM) utilizing an external dataset. We then rank the phrase tables using an LSTM-based encoder-decoder. This method produces a gain of up to 3.14 BLEU score on the test set.
%R 10.26615/978-954-452-056-4_004
%U https://aclanthology.org/R19-1004/
%U https://doi.org/10.26615/978-954-452-056-4_004
%P 25-32
Markdown (Informal)
[Enhancing Phrase-Based Statistical Machine Translation by Learning Phrase Representations Using Long Short-Term Memory Network](https://aclanthology.org/R19-1004/) (Ahmadnia & Dorr, RANLP 2019)
ACL