@inproceedings{cui-bollegala-2019-self,
title = "Self-Adaptation for Unsupervised Domain Adaptation",
author = "Cui, Xia and
Bollegala, Danushka",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1025",
doi = "10.26615/978-954-452-056-4_025",
pages = "213--222",
abstract = "Lack of labelled data in the target domain for training is a common problem in domain adaptation. To overcome this problem, we propose a novel unsupervised domain adaptation method that combines projection and self-training based approaches. Using the labelled data from the source domain, we first learn a projection that maximises the distance among the nearest neighbours with opposite labels in the source domain. Next, we project the source domain labelled data using the learnt projection and train a classifier for the target class prediction. We then use the trained classifier to predict pseudo labels for the target domain unlabelled data. Finally, we learn a projection for the target domain as we did for the source domain using the pseudo-labelled target domain data, where we maximise the distance between nearest neighbours having opposite pseudo labels. Experiments on a standard benchmark dataset for domain adaptation show that the proposed method consistently outperforms numerous baselines and returns competitive results comparable to that of SOTA including self-training, tri-training, and neural adaptations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cui-bollegala-2019-self">
<titleInfo>
<title>Self-Adaptation for Unsupervised Domain Adaptation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xia</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danushka</namePart>
<namePart type="family">Bollegala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lack of labelled data in the target domain for training is a common problem in domain adaptation. To overcome this problem, we propose a novel unsupervised domain adaptation method that combines projection and self-training based approaches. Using the labelled data from the source domain, we first learn a projection that maximises the distance among the nearest neighbours with opposite labels in the source domain. Next, we project the source domain labelled data using the learnt projection and train a classifier for the target class prediction. We then use the trained classifier to predict pseudo labels for the target domain unlabelled data. Finally, we learn a projection for the target domain as we did for the source domain using the pseudo-labelled target domain data, where we maximise the distance between nearest neighbours having opposite pseudo labels. Experiments on a standard benchmark dataset for domain adaptation show that the proposed method consistently outperforms numerous baselines and returns competitive results comparable to that of SOTA including self-training, tri-training, and neural adaptations.</abstract>
<identifier type="citekey">cui-bollegala-2019-self</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_025</identifier>
<location>
<url>https://aclanthology.org/R19-1025</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>213</start>
<end>222</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Adaptation for Unsupervised Domain Adaptation
%A Cui, Xia
%A Bollegala, Danushka
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F cui-bollegala-2019-self
%X Lack of labelled data in the target domain for training is a common problem in domain adaptation. To overcome this problem, we propose a novel unsupervised domain adaptation method that combines projection and self-training based approaches. Using the labelled data from the source domain, we first learn a projection that maximises the distance among the nearest neighbours with opposite labels in the source domain. Next, we project the source domain labelled data using the learnt projection and train a classifier for the target class prediction. We then use the trained classifier to predict pseudo labels for the target domain unlabelled data. Finally, we learn a projection for the target domain as we did for the source domain using the pseudo-labelled target domain data, where we maximise the distance between nearest neighbours having opposite pseudo labels. Experiments on a standard benchmark dataset for domain adaptation show that the proposed method consistently outperforms numerous baselines and returns competitive results comparable to that of SOTA including self-training, tri-training, and neural adaptations.
%R 10.26615/978-954-452-056-4_025
%U https://aclanthology.org/R19-1025
%U https://doi.org/10.26615/978-954-452-056-4_025
%P 213-222
Markdown (Informal)
[Self-Adaptation for Unsupervised Domain Adaptation](https://aclanthology.org/R19-1025) (Cui & Bollegala, RANLP 2019)
ACL