@inproceedings{kumar-etal-2019-study,
title = "Study on Unsupervised Statistical Machine Translation for Backtranslation",
author = "Kumar, Anush and
Nayak, Nihal V. and
Chandra, Aditya and
Nair, Mydhili K.",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1068",
doi = "10.26615/978-954-452-056-4_068",
pages = "578--582",
abstract = "Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2019-study">
<titleInfo>
<title>Study on Unsupervised Statistical Machine Translation for Backtranslation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anush</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nihal</namePart>
<namePart type="given">V</namePart>
<namePart type="family">Nayak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Chandra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mydhili</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Nair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.</abstract>
<identifier type="citekey">kumar-etal-2019-study</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_068</identifier>
<location>
<url>https://aclanthology.org/R19-1068</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>578</start>
<end>582</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Study on Unsupervised Statistical Machine Translation for Backtranslation
%A Kumar, Anush
%A Nayak, Nihal V.
%A Chandra, Aditya
%A Nair, Mydhili K.
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F kumar-etal-2019-study
%X Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.
%R 10.26615/978-954-452-056-4_068
%U https://aclanthology.org/R19-1068
%U https://doi.org/10.26615/978-954-452-056-4_068
%P 578-582
Markdown (Informal)
[Study on Unsupervised Statistical Machine Translation for Backtranslation](https://aclanthology.org/R19-1068) (Kumar et al., RANLP 2019)
ACL