@inproceedings{plum-etal-2019-toponym,
title = "Toponym Detection in the Bio-Medical Domain: A Hybrid Approach with Deep Learning",
author = "Plum, Alistair and
Ranasinghe, Tharindu and
Orasan, Constantin",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
month = sep,
year = "2019",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd.",
url = "https://aclanthology.org/R19-1106",
doi = "10.26615/978-954-452-056-4_106",
pages = "912--921",
abstract = "This paper compares how different machine learning classifiers can be used together with simple string matching and named entity recognition to detect locations in texts. We compare five different state-of-the-art machine learning classifiers in order to predict whether a sentence contains a location or not. Following this classification task, we use a string matching algorithm with a gazetteer to identify the exact index of a toponym within the sentence. We evaluate different approaches in terms of machine learning classifiers, text pre-processing and location extraction on the SemEval-2019 Task 12 dataset, compiled for toponym resolution in the bio-medical domain. Finally, we compare the results with our system that was previously submitted to the SemEval-2019 task evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="plum-etal-2019-toponym">
<titleInfo>
<title>Toponym Detection in the Bio-Medical Domain: A Hybrid Approach with Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alistair</namePart>
<namePart type="family">Plum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Constantin</namePart>
<namePart type="family">Orasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd.</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper compares how different machine learning classifiers can be used together with simple string matching and named entity recognition to detect locations in texts. We compare five different state-of-the-art machine learning classifiers in order to predict whether a sentence contains a location or not. Following this classification task, we use a string matching algorithm with a gazetteer to identify the exact index of a toponym within the sentence. We evaluate different approaches in terms of machine learning classifiers, text pre-processing and location extraction on the SemEval-2019 Task 12 dataset, compiled for toponym resolution in the bio-medical domain. Finally, we compare the results with our system that was previously submitted to the SemEval-2019 task evaluation.</abstract>
<identifier type="citekey">plum-etal-2019-toponym</identifier>
<identifier type="doi">10.26615/978-954-452-056-4_106</identifier>
<location>
<url>https://aclanthology.org/R19-1106</url>
</location>
<part>
<date>2019-09</date>
<extent unit="page">
<start>912</start>
<end>921</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toponym Detection in the Bio-Medical Domain: A Hybrid Approach with Deep Learning
%A Plum, Alistair
%A Ranasinghe, Tharindu
%A Orasan, Constantin
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F plum-etal-2019-toponym
%X This paper compares how different machine learning classifiers can be used together with simple string matching and named entity recognition to detect locations in texts. We compare five different state-of-the-art machine learning classifiers in order to predict whether a sentence contains a location or not. Following this classification task, we use a string matching algorithm with a gazetteer to identify the exact index of a toponym within the sentence. We evaluate different approaches in terms of machine learning classifiers, text pre-processing and location extraction on the SemEval-2019 Task 12 dataset, compiled for toponym resolution in the bio-medical domain. Finally, we compare the results with our system that was previously submitted to the SemEval-2019 task evaluation.
%R 10.26615/978-954-452-056-4_106
%U https://aclanthology.org/R19-1106
%U https://doi.org/10.26615/978-954-452-056-4_106
%P 912-921
Markdown (Informal)
[Toponym Detection in the Bio-Medical Domain: A Hybrid Approach with Deep Learning](https://aclanthology.org/R19-1106) (Plum et al., RANLP 2019)
ACL