Unsupervised dialogue intent detection via hierarchical topic model

Artem Popov, Victor Bulatov, Darya Polyudova, Eugenia Veselova


Abstract
One of the challenges during a task-oriented chatbot development is the scarce availability of the labeled training data. The best way of getting one is to ask the assessors to tag each dialogue according to its intent. Unfortunately, performing labeling without any provisional collection structure is difficult since the very notion of the intent is ill-defined. In this paper, we propose a hierarchical multimodal regularized topic model to obtain a first approximation of the intent set. Our rationale for hierarchical models usage is their ability to take into account several degrees of the dialogues relevancy. We attempt to build a model that can distinguish between subject-based (e.g. medicine and transport topics) and action-based (e.g. filing of an application and tracking application status) similarities. In order to achieve this, we divide set of all features into several groups according to part-of-speech analysis. Various feature groups are treated differently on different hierarchy levels.
Anthology ID:
R19-1108
Volume:
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
Month:
September
Year:
2019
Address:
Varna, Bulgaria
Editors:
Ruslan Mitkov, Galia Angelova
Venue:
RANLP
SIG:
Publisher:
INCOMA Ltd.
Note:
Pages:
932–938
Language:
URL:
https://aclanthology.org/R19-1108/
DOI:
10.26615/978-954-452-056-4_108
Bibkey:
Cite (ACL):
Artem Popov, Victor Bulatov, Darya Polyudova, and Eugenia Veselova. 2019. Unsupervised dialogue intent detection via hierarchical topic model. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pages 932–938, Varna, Bulgaria. INCOMA Ltd..
Cite (Informal):
Unsupervised dialogue intent detection via hierarchical topic model (Popov et al., RANLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/R19-1108.pdf