@inproceedings{tang-etal-2019-understanding,
    title = "Understanding Neural Machine Translation by Simplification: The Case of Encoder-free Models",
    author = "Tang, Gongbo  and
      Sennrich, Rico  and
      Nivre, Joakim",
    editor = "Mitkov, Ruslan  and
      Angelova, Galia",
    booktitle = "Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)",
    month = sep,
    year = "2019",
    address = "Varna, Bulgaria",
    publisher = "INCOMA Ltd.",
    url = "https://aclanthology.org/R19-1136/",
    doi = "10.26615/978-954-452-056-4_136",
    pages = "1186--1193",
    abstract = "In this paper, we try to understand neural machine translation (NMT) via simplifying NMT architectures and training encoder-free NMT models. In an encoder-free model, the sums of word embeddings and positional embeddings represent the source. The decoder is a standard Transformer or recurrent neural network that directly attends to embeddings via attention mechanisms. Experimental results show (1) that the attention mechanism in encoder-free models acts as a strong feature extractor, (2) that the word embeddings in encoder-free models are competitive to those in conventional models, (3) that non-contextualized source representations lead to a big performance drop, and (4) that encoder-free models have different effects on alignment quality for German-English and Chinese-English."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2019-understanding">
    <titleInfo>
        <title>Understanding Neural Machine Translation by Simplification: The Case of Encoder-free Models</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Gongbo</namePart>
        <namePart type="family">Tang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rico</namePart>
        <namePart type="family">Sennrich</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Joakim</namePart>
        <namePart type="family">Nivre</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ruslan</namePart>
            <namePart type="family">Mitkov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Galia</namePart>
            <namePart type="family">Angelova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>INCOMA Ltd.</publisher>
            <place>
                <placeTerm type="text">Varna, Bulgaria</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we try to understand neural machine translation (NMT) via simplifying NMT architectures and training encoder-free NMT models. In an encoder-free model, the sums of word embeddings and positional embeddings represent the source. The decoder is a standard Transformer or recurrent neural network that directly attends to embeddings via attention mechanisms. Experimental results show (1) that the attention mechanism in encoder-free models acts as a strong feature extractor, (2) that the word embeddings in encoder-free models are competitive to those in conventional models, (3) that non-contextualized source representations lead to a big performance drop, and (4) that encoder-free models have different effects on alignment quality for German-English and Chinese-English.</abstract>
    <identifier type="citekey">tang-etal-2019-understanding</identifier>
    <identifier type="doi">10.26615/978-954-452-056-4_136</identifier>
    <location>
        <url>https://aclanthology.org/R19-1136/</url>
    </location>
    <part>
        <date>2019-09</date>
        <extent unit="page">
            <start>1186</start>
            <end>1193</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Understanding Neural Machine Translation by Simplification: The Case of Encoder-free Models
%A Tang, Gongbo
%A Sennrich, Rico
%A Nivre, Joakim
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
%D 2019
%8 September
%I INCOMA Ltd.
%C Varna, Bulgaria
%F tang-etal-2019-understanding
%X In this paper, we try to understand neural machine translation (NMT) via simplifying NMT architectures and training encoder-free NMT models. In an encoder-free model, the sums of word embeddings and positional embeddings represent the source. The decoder is a standard Transformer or recurrent neural network that directly attends to embeddings via attention mechanisms. Experimental results show (1) that the attention mechanism in encoder-free models acts as a strong feature extractor, (2) that the word embeddings in encoder-free models are competitive to those in conventional models, (3) that non-contextualized source representations lead to a big performance drop, and (4) that encoder-free models have different effects on alignment quality for German-English and Chinese-English.
%R 10.26615/978-954-452-056-4_136
%U https://aclanthology.org/R19-1136/
%U https://doi.org/10.26615/978-954-452-056-4_136
%P 1186-1193
Markdown (Informal)
[Understanding Neural Machine Translation by Simplification: The Case of Encoder-free Models](https://aclanthology.org/R19-1136/) (Tang et al., RANLP 2019)
ACL