@inproceedings{maredia-etal-2017-comparing,
title = "Comparing Approaches for Automatic Question Identification",
author = "Maredia, Angel and
Schechtman, Kara and
Levitan, Sarah Ita and
Hirschberg, Julia",
editor = "Ide, Nancy and
Herbelot, Aur{\'e}lie and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*{SEM} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-1013/",
doi = "10.18653/v1/S17-1013",
pages = "110--114",
abstract = "Collecting spontaneous speech corpora that are open-ended, yet topically constrained, is increasingly popular for research in spoken dialogue systems and speaker state, inter alia. Typically, these corpora are labeled by human annotators, either in the lab or through crowd-sourcing; however, this is cumbersome and time-consuming for large corpora. We present four different approaches to automatically tagging a corpus when general topics of the conversations are known. We develop these approaches on the Columbia X-Cultural Deception corpus and find accuracy that significantly exceeds the baseline. Finally, we conduct a cross-corpus evaluation by testing the best performing approach on the Columbia/SRI/Colorado corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maredia-etal-2017-comparing">
<titleInfo>
<title>Comparing Approaches for Automatic Question Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Angel</namePart>
<namePart type="family">Maredia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kara</namePart>
<namePart type="family">Schechtman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="given">Ita</namePart>
<namePart type="family">Levitan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hirschberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Collecting spontaneous speech corpora that are open-ended, yet topically constrained, is increasingly popular for research in spoken dialogue systems and speaker state, inter alia. Typically, these corpora are labeled by human annotators, either in the lab or through crowd-sourcing; however, this is cumbersome and time-consuming for large corpora. We present four different approaches to automatically tagging a corpus when general topics of the conversations are known. We develop these approaches on the Columbia X-Cultural Deception corpus and find accuracy that significantly exceeds the baseline. Finally, we conduct a cross-corpus evaluation by testing the best performing approach on the Columbia/SRI/Colorado corpus.</abstract>
<identifier type="citekey">maredia-etal-2017-comparing</identifier>
<identifier type="doi">10.18653/v1/S17-1013</identifier>
<location>
<url>https://aclanthology.org/S17-1013/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>110</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Approaches for Automatic Question Identification
%A Maredia, Angel
%A Schechtman, Kara
%A Levitan, Sarah Ita
%A Hirschberg, Julia
%Y Ide, Nancy
%Y Herbelot, Aurélie
%Y Màrquez, Lluís
%S Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F maredia-etal-2017-comparing
%X Collecting spontaneous speech corpora that are open-ended, yet topically constrained, is increasingly popular for research in spoken dialogue systems and speaker state, inter alia. Typically, these corpora are labeled by human annotators, either in the lab or through crowd-sourcing; however, this is cumbersome and time-consuming for large corpora. We present four different approaches to automatically tagging a corpus when general topics of the conversations are known. We develop these approaches on the Columbia X-Cultural Deception corpus and find accuracy that significantly exceeds the baseline. Finally, we conduct a cross-corpus evaluation by testing the best performing approach on the Columbia/SRI/Colorado corpus.
%R 10.18653/v1/S17-1013
%U https://aclanthology.org/S17-1013/
%U https://doi.org/10.18653/v1/S17-1013
%P 110-114
Markdown (Informal)
[Comparing Approaches for Automatic Question Identification](https://aclanthology.org/S17-1013/) (Maredia et al., *SEM 2017)
ACL
- Angel Maredia, Kara Schechtman, Sarah Ita Levitan, and Julia Hirschberg. 2017. Comparing Approaches for Automatic Question Identification. In Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 110–114, Vancouver, Canada. Association for Computational Linguistics.