@inproceedings{duma-menzel-2017-sef,
title = "{SEF}@{UHH} at {S}em{E}val-2017 Task 1: Unsupervised Knowledge-Free Semantic Textual Similarity via Paragraph Vector",
author = "Duma, Mirela-Stefania and
Menzel, Wolfgang",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2024/",
doi = "10.18653/v1/S17-2024",
pages = "170--174",
abstract = "This paper describes our unsupervised knowledge-free approach to the SemEval-2017 Task 1 Competition. The proposed method makes use of Paragraph Vector for assessing the semantic similarity between pairs of sentences. We experimented with various dimensions of the vector and three state-of-the-art similarity metrics. Given a cross-lingual task, we trained models corresponding to its two languages and combined the models by averaging the similarity scores. The results of our submitted runs are above the median scores for five out of seven test sets by means of Pearson Correlation. Moreover, one of our system runs performed best on the Spanish-English-WMT test set ranking first out of 53 runs submitted in total by all participants."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duma-menzel-2017-sef">
<titleInfo>
<title>SEF@UHH at SemEval-2017 Task 1: Unsupervised Knowledge-Free Semantic Textual Similarity via Paragraph Vector</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirela-Stefania</namePart>
<namePart type="family">Duma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Menzel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our unsupervised knowledge-free approach to the SemEval-2017 Task 1 Competition. The proposed method makes use of Paragraph Vector for assessing the semantic similarity between pairs of sentences. We experimented with various dimensions of the vector and three state-of-the-art similarity metrics. Given a cross-lingual task, we trained models corresponding to its two languages and combined the models by averaging the similarity scores. The results of our submitted runs are above the median scores for five out of seven test sets by means of Pearson Correlation. Moreover, one of our system runs performed best on the Spanish-English-WMT test set ranking first out of 53 runs submitted in total by all participants.</abstract>
<identifier type="citekey">duma-menzel-2017-sef</identifier>
<identifier type="doi">10.18653/v1/S17-2024</identifier>
<location>
<url>https://aclanthology.org/S17-2024/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>170</start>
<end>174</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SEF@UHH at SemEval-2017 Task 1: Unsupervised Knowledge-Free Semantic Textual Similarity via Paragraph Vector
%A Duma, Mirela-Stefania
%A Menzel, Wolfgang
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F duma-menzel-2017-sef
%X This paper describes our unsupervised knowledge-free approach to the SemEval-2017 Task 1 Competition. The proposed method makes use of Paragraph Vector for assessing the semantic similarity between pairs of sentences. We experimented with various dimensions of the vector and three state-of-the-art similarity metrics. Given a cross-lingual task, we trained models corresponding to its two languages and combined the models by averaging the similarity scores. The results of our submitted runs are above the median scores for five out of seven test sets by means of Pearson Correlation. Moreover, one of our system runs performed best on the Spanish-English-WMT test set ranking first out of 53 runs submitted in total by all participants.
%R 10.18653/v1/S17-2024
%U https://aclanthology.org/S17-2024/
%U https://doi.org/10.18653/v1/S17-2024
%P 170-174
Markdown (Informal)
[SEF@UHH at SemEval-2017 Task 1: Unsupervised Knowledge-Free Semantic Textual Similarity via Paragraph Vector](https://aclanthology.org/S17-2024/) (Duma & Menzel, SemEval 2017)
ACL