@inproceedings{saina-etal-2017-takelab,
title = "{T}ake{L}ab-{QA} at {S}em{E}val-2017 Task 3: Classification Experiments for Answer Retrieval in Community {QA}",
author = "{\v{S}}aina, Filip and
Kukurin, Toni and
Pulji{\'c}, Lukrecija and
Karan, Mladen and
{\v{S}}najder, Jan",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2055",
doi = "10.18653/v1/S17-2055",
pages = "339--343",
abstract = "In this paper we present the TakeLab-QA entry to SemEval 2017 task 3, which is a question-comment re-ranking problem. We present a classification based approach, including two supervised learning models {--} Support Vector Machines (SVM) and Convolutional Neural Networks (CNN). We use features based on different semantic similarity models (e.g., Latent Dirichlet Allocation), as well as features based on several types of pre-trained word embeddings. Moreover, we also use some hand-crafted task-specific features. For training, our system uses no external labeled data apart from that provided by the organizers. Our primary submission achieves a MAP-score of 81.14 and F1-score of 66.99 {--} ranking us 10th on the SemEval 2017 task 3, subtask A.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saina-etal-2017-takelab">
<titleInfo>
<title>TakeLab-QA at SemEval-2017 Task 3: Classification Experiments for Answer Retrieval in Community QA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Šaina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toni</namePart>
<namePart type="family">Kukurin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lukrecija</namePart>
<namePart type="family">Puljić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mladen</namePart>
<namePart type="family">Karan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present the TakeLab-QA entry to SemEval 2017 task 3, which is a question-comment re-ranking problem. We present a classification based approach, including two supervised learning models – Support Vector Machines (SVM) and Convolutional Neural Networks (CNN). We use features based on different semantic similarity models (e.g., Latent Dirichlet Allocation), as well as features based on several types of pre-trained word embeddings. Moreover, we also use some hand-crafted task-specific features. For training, our system uses no external labeled data apart from that provided by the organizers. Our primary submission achieves a MAP-score of 81.14 and F1-score of 66.99 – ranking us 10th on the SemEval 2017 task 3, subtask A.</abstract>
<identifier type="citekey">saina-etal-2017-takelab</identifier>
<identifier type="doi">10.18653/v1/S17-2055</identifier>
<location>
<url>https://aclanthology.org/S17-2055</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>339</start>
<end>343</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TakeLab-QA at SemEval-2017 Task 3: Classification Experiments for Answer Retrieval in Community QA
%A Šaina, Filip
%A Kukurin, Toni
%A Puljić, Lukrecija
%A Karan, Mladen
%A Šnajder, Jan
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F saina-etal-2017-takelab
%X In this paper we present the TakeLab-QA entry to SemEval 2017 task 3, which is a question-comment re-ranking problem. We present a classification based approach, including two supervised learning models – Support Vector Machines (SVM) and Convolutional Neural Networks (CNN). We use features based on different semantic similarity models (e.g., Latent Dirichlet Allocation), as well as features based on several types of pre-trained word embeddings. Moreover, we also use some hand-crafted task-specific features. For training, our system uses no external labeled data apart from that provided by the organizers. Our primary submission achieves a MAP-score of 81.14 and F1-score of 66.99 – ranking us 10th on the SemEval 2017 task 3, subtask A.
%R 10.18653/v1/S17-2055
%U https://aclanthology.org/S17-2055
%U https://doi.org/10.18653/v1/S17-2055
%P 339-343
Markdown (Informal)
[TakeLab-QA at SemEval-2017 Task 3: Classification Experiments for Answer Retrieval in Community QA](https://aclanthology.org/S17-2055) (Šaina et al., SemEval 2017)
ACL