@inproceedings{mahajan-zaveri-2017-svnit,
title = "{SVNIT} @ {S}em{E}val 2017 Task-6: Learning a Sense of Humor Using Supervised Approach",
author = "Mahajan, Rutal and
Zaveri, Mukesh",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2069",
doi = "10.18653/v1/S17-2069",
pages = "411--415",
abstract = {This paper describes the system devel-oped for SemEval 2017 task 6: {\#}HashTagWars -Learning a Sense of Hu-mor. Learning to recognize sense of hu-mor is the important task for language understanding applications. Different set of features based on frequency of words, structure of tweets and semantics are used in this system to identify the presence of humor in tweets. Supervised machine learning approaches, Multilayer percep-tron and Na{\"\i}ve Bayes are used to classify the tweets in to three level of sense of humor. For given Hashtag, the system finds the funniest tweet and predicts the amount of funniness of all the other tweets. In official submitted runs, we have achieved 0.506 accuracy using mul-tilayer perceptron in subtask-A and 0.938 distance in subtask-B. Using Na{\"\i}ve bayes in subtask-B, the system achieved 0.949 distance. Apart from official runs, this system have scored 0.751 accuracy in subtask-A using SVM. But still there is a wide room for improvement in system.},
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mahajan-zaveri-2017-svnit">
<titleInfo>
<title>SVNIT @ SemEval 2017 Task-6: Learning a Sense of Humor Using Supervised Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rutal</namePart>
<namePart type="family">Mahajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mukesh</namePart>
<namePart type="family">Zaveri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system devel-oped for SemEval 2017 task 6: #HashTagWars -Learning a Sense of Hu-mor. Learning to recognize sense of hu-mor is the important task for language understanding applications. Different set of features based on frequency of words, structure of tweets and semantics are used in this system to identify the presence of humor in tweets. Supervised machine learning approaches, Multilayer percep-tron and Naïve Bayes are used to classify the tweets in to three level of sense of humor. For given Hashtag, the system finds the funniest tweet and predicts the amount of funniness of all the other tweets. In official submitted runs, we have achieved 0.506 accuracy using mul-tilayer perceptron in subtask-A and 0.938 distance in subtask-B. Using Naïve bayes in subtask-B, the system achieved 0.949 distance. Apart from official runs, this system have scored 0.751 accuracy in subtask-A using SVM. But still there is a wide room for improvement in system.</abstract>
<identifier type="citekey">mahajan-zaveri-2017-svnit</identifier>
<identifier type="doi">10.18653/v1/S17-2069</identifier>
<location>
<url>https://aclanthology.org/S17-2069</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>411</start>
<end>415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SVNIT @ SemEval 2017 Task-6: Learning a Sense of Humor Using Supervised Approach
%A Mahajan, Rutal
%A Zaveri, Mukesh
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F mahajan-zaveri-2017-svnit
%X This paper describes the system devel-oped for SemEval 2017 task 6: #HashTagWars -Learning a Sense of Hu-mor. Learning to recognize sense of hu-mor is the important task for language understanding applications. Different set of features based on frequency of words, structure of tweets and semantics are used in this system to identify the presence of humor in tweets. Supervised machine learning approaches, Multilayer percep-tron and Naïve Bayes are used to classify the tweets in to three level of sense of humor. For given Hashtag, the system finds the funniest tweet and predicts the amount of funniness of all the other tweets. In official submitted runs, we have achieved 0.506 accuracy using mul-tilayer perceptron in subtask-A and 0.938 distance in subtask-B. Using Naïve bayes in subtask-B, the system achieved 0.949 distance. Apart from official runs, this system have scored 0.751 accuracy in subtask-A using SVM. But still there is a wide room for improvement in system.
%R 10.18653/v1/S17-2069
%U https://aclanthology.org/S17-2069
%U https://doi.org/10.18653/v1/S17-2069
%P 411-415
Markdown (Informal)
[SVNIT @ SemEval 2017 Task-6: Learning a Sense of Humor Using Supervised Approach](https://aclanthology.org/S17-2069) (Mahajan & Zaveri, SemEval 2017)
ACL