@inproceedings{dovdon-saias-2017-ej,
title = "ej-sa-2017 at {S}em{E}val-2017 Task 4: Experiments for Target oriented Sentiment Analysis in {T}witter",
author = "Dovdon, Enkhzol and
Saias, Jos{\'e}",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2106/",
doi = "10.18653/v1/S17-2106",
pages = "644--647",
abstract = "This paper describes the system we have used for participating in Subtasks A (Message Polarity Classification) and B (Topic-Based Message Polarity Classification according to a two-point scale) of SemEval-2017 Task 4 Sentiment Analysis in Twitter. We used several features with a sentiment lexicon and NLP techniques, Maximum Entropy as a classifier for our system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dovdon-saias-2017-ej">
<titleInfo>
<title>ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment Analysis in Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enkhzol</namePart>
<namePart type="family">Dovdon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="family">Saias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system we have used for participating in Subtasks A (Message Polarity Classification) and B (Topic-Based Message Polarity Classification according to a two-point scale) of SemEval-2017 Task 4 Sentiment Analysis in Twitter. We used several features with a sentiment lexicon and NLP techniques, Maximum Entropy as a classifier for our system.</abstract>
<identifier type="citekey">dovdon-saias-2017-ej</identifier>
<identifier type="doi">10.18653/v1/S17-2106</identifier>
<location>
<url>https://aclanthology.org/S17-2106/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>644</start>
<end>647</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment Analysis in Twitter
%A Dovdon, Enkhzol
%A Saias, José
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F dovdon-saias-2017-ej
%X This paper describes the system we have used for participating in Subtasks A (Message Polarity Classification) and B (Topic-Based Message Polarity Classification according to a two-point scale) of SemEval-2017 Task 4 Sentiment Analysis in Twitter. We used several features with a sentiment lexicon and NLP techniques, Maximum Entropy as a classifier for our system.
%R 10.18653/v1/S17-2106
%U https://aclanthology.org/S17-2106/
%U https://doi.org/10.18653/v1/S17-2106
%P 644-647
Markdown (Informal)
[ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment Analysis in Twitter](https://aclanthology.org/S17-2106/) (Dovdon & Saias, SemEval 2017)
ACL