@inproceedings{baziotis-etal-2017-datastories-semeval,
title = "{D}ata{S}tories at {S}em{E}val-2017 Task 4: Deep {LSTM} with Attention for Message-level and Topic-based Sentiment Analysis",
author = "Baziotis, Christos and
Pelekis, Nikos and
Doulkeridis, Christos",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2126",
doi = "10.18653/v1/S17-2126",
pages = "747--754",
abstract = "In this paper we present two deep-learning systems that competed at SemEval-2017 Task 4 {``}Sentiment Analysis in Twitter{''}. We participated in all subtasks for English tweets, involving message-level and topic-based sentiment polarity classification and quantification. We use Long Short-Term Memory (LSTM) networks augmented with two kinds of attention mechanisms, on top of word embeddings pre-trained on a big collection of Twitter messages. Also, we present a text processing tool suitable for social network messages, which performs tokenization, word normalization, segmentation and spell correction. Moreover, our approach uses no hand-crafted features or sentiment lexicons. We ranked 1st (tie) in Subtask A, and achieved very competitive results in the rest of the Subtasks. Both the word embeddings and our text processing tool are available to the research community.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baziotis-etal-2017-datastories-semeval">
<titleInfo>
<title>DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Baziotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Pelekis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Doulkeridis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present two deep-learning systems that competed at SemEval-2017 Task 4 “Sentiment Analysis in Twitter”. We participated in all subtasks for English tweets, involving message-level and topic-based sentiment polarity classification and quantification. We use Long Short-Term Memory (LSTM) networks augmented with two kinds of attention mechanisms, on top of word embeddings pre-trained on a big collection of Twitter messages. Also, we present a text processing tool suitable for social network messages, which performs tokenization, word normalization, segmentation and spell correction. Moreover, our approach uses no hand-crafted features or sentiment lexicons. We ranked 1st (tie) in Subtask A, and achieved very competitive results in the rest of the Subtasks. Both the word embeddings and our text processing tool are available to the research community.</abstract>
<identifier type="citekey">baziotis-etal-2017-datastories-semeval</identifier>
<identifier type="doi">10.18653/v1/S17-2126</identifier>
<location>
<url>https://aclanthology.org/S17-2126</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>747</start>
<end>754</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis
%A Baziotis, Christos
%A Pelekis, Nikos
%A Doulkeridis, Christos
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F baziotis-etal-2017-datastories-semeval
%X In this paper we present two deep-learning systems that competed at SemEval-2017 Task 4 “Sentiment Analysis in Twitter”. We participated in all subtasks for English tweets, involving message-level and topic-based sentiment polarity classification and quantification. We use Long Short-Term Memory (LSTM) networks augmented with two kinds of attention mechanisms, on top of word embeddings pre-trained on a big collection of Twitter messages. Also, we present a text processing tool suitable for social network messages, which performs tokenization, word normalization, segmentation and spell correction. Moreover, our approach uses no hand-crafted features or sentiment lexicons. We ranked 1st (tie) in Subtask A, and achieved very competitive results in the rest of the Subtasks. Both the word embeddings and our text processing tool are available to the research community.
%R 10.18653/v1/S17-2126
%U https://aclanthology.org/S17-2126
%U https://doi.org/10.18653/v1/S17-2126
%P 747-754
Markdown (Informal)
[DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis](https://aclanthology.org/S17-2126) (Baziotis et al., SemEval 2017)
ACL