@inproceedings{ayata-etal-2017-busem,
title = "{BUSEM} at {S}em{E}val-2017 Task 4{A} Sentiment Analysis with Word Embedding and Long Short Term Memory {RNN} Approaches",
author = "Ayata, Deger and
Saraclar, Murat and
Ozgur, Arzucan",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2131",
doi = "10.18653/v1/S17-2131",
pages = "777--783",
abstract = "This paper describes our approach for SemEval-2017 Task 4: Sentiment Analysis in Twitter. We have participated in Subtask A: Message Polarity Classification subtask and developed two systems. The first system uses word embeddings for feature representation and Support Vector Machine, Random Forest and Naive Bayes algorithms for classification of Twitter messages into negative, neutral and positive polarity. The second system is based on Long Short Term Memory Recurrent Neural Networks and uses word indexes as sequence of inputs for feature representation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ayata-etal-2017-busem">
<titleInfo>
<title>BUSEM at SemEval-2017 Task 4A Sentiment Analysis with Word Embedding and Long Short Term Memory RNN Approaches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deger</namePart>
<namePart type="family">Ayata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Murat</namePart>
<namePart type="family">Saraclar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arzucan</namePart>
<namePart type="family">Ozgur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our approach for SemEval-2017 Task 4: Sentiment Analysis in Twitter. We have participated in Subtask A: Message Polarity Classification subtask and developed two systems. The first system uses word embeddings for feature representation and Support Vector Machine, Random Forest and Naive Bayes algorithms for classification of Twitter messages into negative, neutral and positive polarity. The second system is based on Long Short Term Memory Recurrent Neural Networks and uses word indexes as sequence of inputs for feature representation.</abstract>
<identifier type="citekey">ayata-etal-2017-busem</identifier>
<identifier type="doi">10.18653/v1/S17-2131</identifier>
<location>
<url>https://aclanthology.org/S17-2131</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>777</start>
<end>783</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BUSEM at SemEval-2017 Task 4A Sentiment Analysis with Word Embedding and Long Short Term Memory RNN Approaches
%A Ayata, Deger
%A Saraclar, Murat
%A Ozgur, Arzucan
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ayata-etal-2017-busem
%X This paper describes our approach for SemEval-2017 Task 4: Sentiment Analysis in Twitter. We have participated in Subtask A: Message Polarity Classification subtask and developed two systems. The first system uses word embeddings for feature representation and Support Vector Machine, Random Forest and Naive Bayes algorithms for classification of Twitter messages into negative, neutral and positive polarity. The second system is based on Long Short Term Memory Recurrent Neural Networks and uses word indexes as sequence of inputs for feature representation.
%R 10.18653/v1/S17-2131
%U https://aclanthology.org/S17-2131
%U https://doi.org/10.18653/v1/S17-2131
%P 777-783
Markdown (Informal)
[BUSEM at SemEval-2017 Task 4A Sentiment Analysis with Word Embedding and Long Short Term Memory RNN Approaches](https://aclanthology.org/S17-2131) (Ayata et al., SemEval 2017)
ACL