@inproceedings{liu-etal-2017-mayonlp,
title = "{M}ayo{NLP} at {S}em{E}val 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications",
author = "Liu, Sijia and
Shen, Feichen and
Chaudhary, Vipin and
Liu, Hongfang",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2166",
doi = "10.18653/v1/S17-2166",
pages = "956--960",
abstract = "In this paper, we present MayoNLP{'}s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance patterns based on labeled keyphrases, is proposed as an incremental feature set to enhance the conventional Named Entity Recognition feature sets. Support vector machine is used as the supervised classifier for keyphrase classification. Our system achieved an overall F1 score of 0.67 for keyphrase classification and 0.64 for keyphrase classification and relation detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2017-mayonlp">
<titleInfo>
<title>MayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sijia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feichen</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vipin</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongfang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance patterns based on labeled keyphrases, is proposed as an incremental feature set to enhance the conventional Named Entity Recognition feature sets. Support vector machine is used as the supervised classifier for keyphrase classification. Our system achieved an overall F1 score of 0.67 for keyphrase classification and 0.64 for keyphrase classification and relation detection.</abstract>
<identifier type="citekey">liu-etal-2017-mayonlp</identifier>
<identifier type="doi">10.18653/v1/S17-2166</identifier>
<location>
<url>https://aclanthology.org/S17-2166</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>956</start>
<end>960</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications
%A Liu, Sijia
%A Shen, Feichen
%A Chaudhary, Vipin
%A Liu, Hongfang
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F liu-etal-2017-mayonlp
%X In this paper, we present MayoNLP’s results from the participation in the ScienceIE share task at SemEval 2017. We focused on the keyphrase classification task (Subtask B). We explored semantic similarities and patterns of keyphrases in scientific publications using pre-trained word embedding models. Word Embedding Distance Pattern, which uses the head noun word embedding to generate distance patterns based on labeled keyphrases, is proposed as an incremental feature set to enhance the conventional Named Entity Recognition feature sets. Support vector machine is used as the supervised classifier for keyphrase classification. Our system achieved an overall F1 score of 0.67 for keyphrase classification and 0.64 for keyphrase classification and relation detection.
%R 10.18653/v1/S17-2166
%U https://aclanthology.org/S17-2166
%U https://doi.org/10.18653/v1/S17-2166
%P 956-960
Markdown (Informal)
[MayoNLP at SemEval 2017 Task 10: Word Embedding Distance Pattern for Keyphrase Classification in Scientific Publications](https://aclanthology.org/S17-2166) (Liu et al., SemEval 2017)
ACL