@inproceedings{choi-etal-2018-element,
title = "Element-wise Bilinear Interaction for Sentence Matching",
author = "Choi, Jihun and
Kim, Taeuk and
Lee, Sang-goo",
editor = "Nissim, Malvina and
Berant, Jonathan and
Lenci, Alessandro",
booktitle = "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-2012/",
doi = "10.18653/v1/S18-2012",
pages = "107--112",
abstract = "When we build a neural network model predicting the relationship between two sentences, the most general and intuitive approach is to use a Siamese architecture, where the sentence vectors obtained from a shared encoder is given as input to a classifier. For the classifier to work effectively, it is important to extract appropriate features from the two vectors and feed them as input. There exist several previous works that suggest heuristic-based function for matching sentence vectors, however it cannot be said that the heuristics tailored for a specific task generalize to other tasks. In this work, we propose a new matching function, ElBiS, that learns to model element-wise interaction between two vectors. From experiments, we empirically demonstrate that the proposed ElBiS matching function outperforms the concatenation-based or heuristic-based matching functions on natural language inference and paraphrase identification, while maintaining the fused representation compact."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choi-etal-2018-element">
<titleInfo>
<title>Element-wise Bilinear Interaction for Sentence Matching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jihun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taeuk</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sang-goo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When we build a neural network model predicting the relationship between two sentences, the most general and intuitive approach is to use a Siamese architecture, where the sentence vectors obtained from a shared encoder is given as input to a classifier. For the classifier to work effectively, it is important to extract appropriate features from the two vectors and feed them as input. There exist several previous works that suggest heuristic-based function for matching sentence vectors, however it cannot be said that the heuristics tailored for a specific task generalize to other tasks. In this work, we propose a new matching function, ElBiS, that learns to model element-wise interaction between two vectors. From experiments, we empirically demonstrate that the proposed ElBiS matching function outperforms the concatenation-based or heuristic-based matching functions on natural language inference and paraphrase identification, while maintaining the fused representation compact.</abstract>
<identifier type="citekey">choi-etal-2018-element</identifier>
<identifier type="doi">10.18653/v1/S18-2012</identifier>
<location>
<url>https://aclanthology.org/S18-2012/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>107</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Element-wise Bilinear Interaction for Sentence Matching
%A Choi, Jihun
%A Kim, Taeuk
%A Lee, Sang-goo
%Y Nissim, Malvina
%Y Berant, Jonathan
%Y Lenci, Alessandro
%S Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F choi-etal-2018-element
%X When we build a neural network model predicting the relationship between two sentences, the most general and intuitive approach is to use a Siamese architecture, where the sentence vectors obtained from a shared encoder is given as input to a classifier. For the classifier to work effectively, it is important to extract appropriate features from the two vectors and feed them as input. There exist several previous works that suggest heuristic-based function for matching sentence vectors, however it cannot be said that the heuristics tailored for a specific task generalize to other tasks. In this work, we propose a new matching function, ElBiS, that learns to model element-wise interaction between two vectors. From experiments, we empirically demonstrate that the proposed ElBiS matching function outperforms the concatenation-based or heuristic-based matching functions on natural language inference and paraphrase identification, while maintaining the fused representation compact.
%R 10.18653/v1/S18-2012
%U https://aclanthology.org/S18-2012/
%U https://doi.org/10.18653/v1/S18-2012
%P 107-112
Markdown (Informal)
[Element-wise Bilinear Interaction for Sentence Matching](https://aclanthology.org/S18-2012/) (Choi et al., *SEM 2018)
ACL