@inproceedings{zhang-etal-2018-fine,
title = "Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds",
author = "Zhang, Sheng and
Duh, Kevin and
Van Durme, Benjamin",
editor = "Nissim, Malvina and
Berant, Jonathan and
Lenci, Alessandro",
booktitle = "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-2022/",
doi = "10.18653/v1/S18-2022",
pages = "173--179",
abstract = "Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context {--} both document and sentence level information {--} than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-fine">
<titleInfo>
<title>Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context – both document and sentence level information – than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets.</abstract>
<identifier type="citekey">zhang-etal-2018-fine</identifier>
<identifier type="doi">10.18653/v1/S18-2022</identifier>
<location>
<url>https://aclanthology.org/S18-2022/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>173</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds
%A Zhang, Sheng
%A Duh, Kevin
%A Van Durme, Benjamin
%Y Nissim, Malvina
%Y Berant, Jonathan
%Y Lenci, Alessandro
%S Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zhang-etal-2018-fine
%X Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context – both document and sentence level information – than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets.
%R 10.18653/v1/S18-2022
%U https://aclanthology.org/S18-2022/
%U https://doi.org/10.18653/v1/S18-2022
%P 173-179
Markdown (Informal)
[Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds](https://aclanthology.org/S18-2022/) (Zhang et al., *SEM 2018)
ACL