@inproceedings{zhang-etal-2018-fine,
    title = "Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds",
    author = "Zhang, Sheng  and
      Duh, Kevin  and
      Van Durme, Benjamin",
    editor = "Nissim, Malvina  and
      Berant, Jonathan  and
      Lenci, Alessandro",
    booktitle = "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-2022/",
    doi = "10.18653/v1/S18-2022",
    pages = "173--179",
    abstract = "Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context {--} both document and sentence level information {--} than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-fine">
    <titleInfo>
        <title>Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sheng</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kevin</namePart>
        <namePart type="family">Duh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Benjamin</namePart>
        <namePart type="family">Van Durme</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Malvina</namePart>
            <namePart type="family">Nissim</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">Berant</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alessandro</namePart>
            <namePart type="family">Lenci</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context – both document and sentence level information – than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets.</abstract>
    <identifier type="citekey">zhang-etal-2018-fine</identifier>
    <identifier type="doi">10.18653/v1/S18-2022</identifier>
    <location>
        <url>https://aclanthology.org/S18-2022/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>173</start>
            <end>179</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds
%A Zhang, Sheng
%A Duh, Kevin
%A Van Durme, Benjamin
%Y Nissim, Malvina
%Y Berant, Jonathan
%Y Lenci, Alessandro
%S Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zhang-etal-2018-fine
%X Fine-grained entity typing is the task of assigning fine-grained semantic types to entity mentions. We propose a neural architecture which learns a distributional semantic representation that leverages a greater amount of semantic context – both document and sentence level information – than prior work. We find that additional context improves performance, with further improvements gained by utilizing adaptive classification thresholds. Experiments show that our approach without reliance on hand-crafted features achieves the state-of-the-art results on three benchmark datasets.
%R 10.18653/v1/S18-2022
%U https://aclanthology.org/S18-2022/
%U https://doi.org/10.18653/v1/S18-2022
%P 173-179
Markdown (Informal)
[Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds](https://aclanthology.org/S18-2022/) (Zhang et al., *SEM 2018)
ACL