@inproceedings{partalas-etal-2016-learning,
title = "Learning to Search for Recognizing Named Entities in {T}witter",
author = "Partalas, Ioannis and
Lopez, C{\'e}dric and
Derbas, Nadia and
Kalitvianski, Ruslan",
editor = "Han, Bo and
Ritter, Alan and
Derczynski, Leon and
Xu, Wei and
Baldwin, Tim",
booktitle = "Proceedings of the 2nd Workshop on Noisy User-generated Text ({WNUT})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-3923",
pages = "171--177",
abstract = "We presented in this work our participation in the 2nd Named Entity Recognition for Twitter shared task. The task has been cast as a sequence labeling one and we employed a learning to search approach in order to tackle it. We also leveraged LOD for extracting rich contextual features for the named-entities. Our submission achieved F-scores of 46.16 and 60.24 for the classification and the segmentation tasks and ranked 2nd and 3rd respectively. The post-analysis showed that LOD features improved substantially the performance of our system as they counter-balance the lack of context in tweets. The shared task gave us the opportunity to test the performance of NER systems in short and noisy textual data. The results of the participated systems shows that the task is far to be considered as a solved one and methods with stellar performance in normal texts need to be revised.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="partalas-etal-2016-learning">
<titleInfo>
<title>Learning to Search for Recognizing Named Entities in Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Partalas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cédric</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadia</namePart>
<namePart type="family">Derbas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Kalitvianski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We presented in this work our participation in the 2nd Named Entity Recognition for Twitter shared task. The task has been cast as a sequence labeling one and we employed a learning to search approach in order to tackle it. We also leveraged LOD for extracting rich contextual features for the named-entities. Our submission achieved F-scores of 46.16 and 60.24 for the classification and the segmentation tasks and ranked 2nd and 3rd respectively. The post-analysis showed that LOD features improved substantially the performance of our system as they counter-balance the lack of context in tweets. The shared task gave us the opportunity to test the performance of NER systems in short and noisy textual data. The results of the participated systems shows that the task is far to be considered as a solved one and methods with stellar performance in normal texts need to be revised.</abstract>
<identifier type="citekey">partalas-etal-2016-learning</identifier>
<location>
<url>https://aclanthology.org/W16-3923</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>171</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Search for Recognizing Named Entities in Twitter
%A Partalas, Ioannis
%A Lopez, Cédric
%A Derbas, Nadia
%A Kalitvianski, Ruslan
%Y Han, Bo
%Y Ritter, Alan
%Y Derczynski, Leon
%Y Xu, Wei
%Y Baldwin, Tim
%S Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F partalas-etal-2016-learning
%X We presented in this work our participation in the 2nd Named Entity Recognition for Twitter shared task. The task has been cast as a sequence labeling one and we employed a learning to search approach in order to tackle it. We also leveraged LOD for extracting rich contextual features for the named-entities. Our submission achieved F-scores of 46.16 and 60.24 for the classification and the segmentation tasks and ranked 2nd and 3rd respectively. The post-analysis showed that LOD features improved substantially the performance of our system as they counter-balance the lack of context in tweets. The shared task gave us the opportunity to test the performance of NER systems in short and noisy textual data. The results of the participated systems shows that the task is far to be considered as a solved one and methods with stellar performance in normal texts need to be revised.
%U https://aclanthology.org/W16-3923
%P 171-177
Markdown (Informal)
[Learning to Search for Recognizing Named Entities in Twitter](https://aclanthology.org/W16-3923) (Partalas et al., WNUT 2016)
ACL