@inproceedings{adams-etal-2016-distributed,
title = "Distributed Vector Representations for Unsupervised Automatic Short Answer Grading",
author = "Adams, Oliver and
Roy, Shourya and
Krishnapuram, Raghuram",
editor = "Chen, Hsin-Hsi and
Tseng, Yuen-Hsien and
Ng, Vincent and
Lu, Xiaofei",
booktitle = "Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications ({NLPTEA}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4904/",
pages = "20--29",
abstract = "We address the problem of automatic short answer grading, evaluating a collection of approaches inspired by recent advances in distributional text representations. In addition, we propose an unsupervised approach for determining text similarity using one-to-many alignment of word vectors. We evaluate the proposed technique across two datasets from different domains, namely, computer science and English reading comprehension, that additionally vary between highschool level and undergraduate students. Experiments demonstrate that the proposed technique often outperforms other compositional distributional semantics approaches as well as vector space methods such as latent semantic analysis. When combined with a scoring scheme, the proposed technique provides a powerful tool for tackling the complex problem of short answer grading. We also discuss a number of other key points worthy of consideration in preparing viable, easy-to-deploy automatic short-answer grading systems for the real-world."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adams-etal-2016-distributed">
<titleInfo>
<title>Distributed Vector Representations for Unsupervised Automatic Short Answer Grading</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Adams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shourya</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raghuram</namePart>
<namePart type="family">Krishnapuram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the problem of automatic short answer grading, evaluating a collection of approaches inspired by recent advances in distributional text representations. In addition, we propose an unsupervised approach for determining text similarity using one-to-many alignment of word vectors. We evaluate the proposed technique across two datasets from different domains, namely, computer science and English reading comprehension, that additionally vary between highschool level and undergraduate students. Experiments demonstrate that the proposed technique often outperforms other compositional distributional semantics approaches as well as vector space methods such as latent semantic analysis. When combined with a scoring scheme, the proposed technique provides a powerful tool for tackling the complex problem of short answer grading. We also discuss a number of other key points worthy of consideration in preparing viable, easy-to-deploy automatic short-answer grading systems for the real-world.</abstract>
<identifier type="citekey">adams-etal-2016-distributed</identifier>
<location>
<url>https://aclanthology.org/W16-4904/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>20</start>
<end>29</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distributed Vector Representations for Unsupervised Automatic Short Answer Grading
%A Adams, Oliver
%A Roy, Shourya
%A Krishnapuram, Raghuram
%Y Chen, Hsin-Hsi
%Y Tseng, Yuen-Hsien
%Y Ng, Vincent
%Y Lu, Xiaofei
%S Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F adams-etal-2016-distributed
%X We address the problem of automatic short answer grading, evaluating a collection of approaches inspired by recent advances in distributional text representations. In addition, we propose an unsupervised approach for determining text similarity using one-to-many alignment of word vectors. We evaluate the proposed technique across two datasets from different domains, namely, computer science and English reading comprehension, that additionally vary between highschool level and undergraduate students. Experiments demonstrate that the proposed technique often outperforms other compositional distributional semantics approaches as well as vector space methods such as latent semantic analysis. When combined with a scoring scheme, the proposed technique provides a powerful tool for tackling the complex problem of short answer grading. We also discuss a number of other key points worthy of consideration in preparing viable, easy-to-deploy automatic short-answer grading systems for the real-world.
%U https://aclanthology.org/W16-4904/
%P 20-29
Markdown (Informal)
[Distributed Vector Representations for Unsupervised Automatic Short Answer Grading](https://aclanthology.org/W16-4904/) (Adams et al., NLP-TEA 2016)
ACL