@inproceedings{chen-etal-2016-generating,
title = "Generating and Scoring Correction Candidates in {C}hinese Grammatical Error Diagnosis",
author = "Chen, Shao-Heng and
Tsai, Yu-Lin and
Lin, Chuan-Jie",
editor = "Chen, Hsin-Hsi and
Tseng, Yuen-Hsien and
Ng, Vincent and
Lu, Xiaofei",
booktitle = "Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications ({NLPTEA}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4917",
pages = "131--139",
abstract = "Grammatical error diagnosis is an essential part in a language-learning tutoring system. Based on the data sets of Chinese grammar error detection tasks, we proposed a system which measures the likelihood of correction candidates generated by deleting or inserting characters or words, moving substrings to different positions, substituting prepositions with other prepositions, or substituting words with their synonyms or similar strings. Sentence likelihood is measured based on the frequencies of substrings from the space-removed version of Google n-grams. The evaluation on the training set shows that Missing-related and Selection-related candidate generation methods have promising performance. Our final system achieved a precision of 30.28{\%} and a recall of 62.85{\%} in the identification level evaluated on the test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2016-generating">
<titleInfo>
<title>Generating and Scoring Correction Candidates in Chinese Grammatical Error Diagnosis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shao-Heng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu-Lin</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuan-Jie</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofei</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Grammatical error diagnosis is an essential part in a language-learning tutoring system. Based on the data sets of Chinese grammar error detection tasks, we proposed a system which measures the likelihood of correction candidates generated by deleting or inserting characters or words, moving substrings to different positions, substituting prepositions with other prepositions, or substituting words with their synonyms or similar strings. Sentence likelihood is measured based on the frequencies of substrings from the space-removed version of Google n-grams. The evaluation on the training set shows that Missing-related and Selection-related candidate generation methods have promising performance. Our final system achieved a precision of 30.28% and a recall of 62.85% in the identification level evaluated on the test set.</abstract>
<identifier type="citekey">chen-etal-2016-generating</identifier>
<location>
<url>https://aclanthology.org/W16-4917</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>131</start>
<end>139</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating and Scoring Correction Candidates in Chinese Grammatical Error Diagnosis
%A Chen, Shao-Heng
%A Tsai, Yu-Lin
%A Lin, Chuan-Jie
%Y Chen, Hsin-Hsi
%Y Tseng, Yuen-Hsien
%Y Ng, Vincent
%Y Lu, Xiaofei
%S Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F chen-etal-2016-generating
%X Grammatical error diagnosis is an essential part in a language-learning tutoring system. Based on the data sets of Chinese grammar error detection tasks, we proposed a system which measures the likelihood of correction candidates generated by deleting or inserting characters or words, moving substrings to different positions, substituting prepositions with other prepositions, or substituting words with their synonyms or similar strings. Sentence likelihood is measured based on the frequencies of substrings from the space-removed version of Google n-grams. The evaluation on the training set shows that Missing-related and Selection-related candidate generation methods have promising performance. Our final system achieved a precision of 30.28% and a recall of 62.85% in the identification level evaluated on the test set.
%U https://aclanthology.org/W16-4917
%P 131-139
Markdown (Informal)
[Generating and Scoring Correction Candidates in Chinese Grammatical Error Diagnosis](https://aclanthology.org/W16-4917) (Chen et al., NLP-TEA 2016)
ACL