@inproceedings{rossiello-etal-2017-centroid,
title = "Centroid-based Text Summarization through Compositionality of Word Embeddings",
author = "Rossiello, Gaetano and
Basile, Pierpaolo and
Semeraro, Giovanni",
editor = "Giannakopoulos, George and
Lloret, Elena and
Conroy, John M. and
Steinberger, Josef and
Litvak, Marina and
Rankel, Peter and
Favre, Benoit",
booktitle = "Proceedings of the {M}ulti{L}ing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1003/",
doi = "10.18653/v1/W17-1003",
pages = "12--21",
abstract = "The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rossiello-etal-2017-centroid">
<titleInfo>
<title>Centroid-based Text Summarization through Compositionality of Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaetano</namePart>
<namePart type="family">Rossiello</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierpaolo</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Semeraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres</title>
</titleInfo>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Giannakopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Lloret</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Conroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Litvak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Rankel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benoit</namePart>
<namePart type="family">Favre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.</abstract>
<identifier type="citekey">rossiello-etal-2017-centroid</identifier>
<identifier type="doi">10.18653/v1/W17-1003</identifier>
<location>
<url>https://aclanthology.org/W17-1003/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>12</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Centroid-based Text Summarization through Compositionality of Word Embeddings
%A Rossiello, Gaetano
%A Basile, Pierpaolo
%A Semeraro, Giovanni
%Y Giannakopoulos, George
%Y Lloret, Elena
%Y Conroy, John M.
%Y Steinberger, Josef
%Y Litvak, Marina
%Y Rankel, Peter
%Y Favre, Benoit
%S Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F rossiello-etal-2017-centroid
%X The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.
%R 10.18653/v1/W17-1003
%U https://aclanthology.org/W17-1003/
%U https://doi.org/10.18653/v1/W17-1003
%P 12-21
Markdown (Informal)
[Centroid-based Text Summarization through Compositionality of Word Embeddings](https://aclanthology.org/W17-1003/) (Rossiello et al., MultiLing 2017)
ACL