@inproceedings{degaetano-ortlieb-teich-2017-modeling,
title = "Modeling intra-textual variation with entropy and surprisal: topical vs. stylistic patterns",
author = "Degaetano-Ortlieb, Stefania and
Teich, Elke",
editor = "Alex, Beatrice and
Degaetano-Ortlieb, Stefania and
Feldman, Anna and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the Joint {SIGHUM} Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2209/",
doi = "10.18653/v1/W17-2209",
pages = "68--77",
abstract = "We present a data-driven approach to investigate intra-textual variation by combining entropy and surprisal. With this approach we detect linguistic variation based on phrasal lexico-grammatical patterns across sections of research articles. Entropy is used to detect patterns typical of specific sections. Surprisal is used to differentiate between more and less informationally-loaded patterns as well as type of information (topical vs. stylistic). While we here focus on research articles in biology/genetics, the methodology is especially interesting for digital humanities scholars, as it can be applied to any text type or domain and combined with additional variables (e.g. time, author or social group)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="degaetano-ortlieb-teich-2017-modeling">
<titleInfo>
<title>Modeling intra-textual variation with entropy and surprisal: topical vs. stylistic patterns</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elke</namePart>
<namePart type="family">Teich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a data-driven approach to investigate intra-textual variation by combining entropy and surprisal. With this approach we detect linguistic variation based on phrasal lexico-grammatical patterns across sections of research articles. Entropy is used to detect patterns typical of specific sections. Surprisal is used to differentiate between more and less informationally-loaded patterns as well as type of information (topical vs. stylistic). While we here focus on research articles in biology/genetics, the methodology is especially interesting for digital humanities scholars, as it can be applied to any text type or domain and combined with additional variables (e.g. time, author or social group).</abstract>
<identifier type="citekey">degaetano-ortlieb-teich-2017-modeling</identifier>
<identifier type="doi">10.18653/v1/W17-2209</identifier>
<location>
<url>https://aclanthology.org/W17-2209/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>68</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling intra-textual variation with entropy and surprisal: topical vs. stylistic patterns
%A Degaetano-Ortlieb, Stefania
%A Teich, Elke
%Y Alex, Beatrice
%Y Degaetano-Ortlieb, Stefania
%Y Feldman, Anna
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F degaetano-ortlieb-teich-2017-modeling
%X We present a data-driven approach to investigate intra-textual variation by combining entropy and surprisal. With this approach we detect linguistic variation based on phrasal lexico-grammatical patterns across sections of research articles. Entropy is used to detect patterns typical of specific sections. Surprisal is used to differentiate between more and less informationally-loaded patterns as well as type of information (topical vs. stylistic). While we here focus on research articles in biology/genetics, the methodology is especially interesting for digital humanities scholars, as it can be applied to any text type or domain and combined with additional variables (e.g. time, author or social group).
%R 10.18653/v1/W17-2209
%U https://aclanthology.org/W17-2209/
%U https://doi.org/10.18653/v1/W17-2209
%P 68-77
Markdown (Informal)
[Modeling intra-textual variation with entropy and surprisal: topical vs. stylistic patterns](https://aclanthology.org/W17-2209/) (Degaetano-Ortlieb & Teich, LaTeCH 2017)
ACL